A lattice Boltzmann model for the Korteweg-de Vries equation with two conservation laws

被引:29
作者
Zhang, Jianying [1 ]
Yan, Guangwu [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
关键词
Lattice Boltzmann model; Higher-order moment method; Korteweg-de Vries equation; SIMULATION; SOLITONS; FLOWS;
D O I
10.1016/j.cpc.2008.12.027
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A lattice Boltzmann model for the Korteweg-de Vries (KdV) equation is presented by using the higher-order moment method. In contrast to the previous lattice Boltzmann model to the KdV equation, our method has higher-order accuracy. Two key steps in the development of this model are the addition of a momentum conservation condition. and the construction of a correlation between the first conservation law and the second conservation law. The numerical example shows the higher-order moment method can be used to raise the truncation error of the lattice Boltzmann scheme. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1054 / 1062
页数:9
相关论文
共 50 条
[41]   Determination of an unknown coefficient in the Korteweg-de Vries equation [J].
Sang, Lin ;
Qiao, Yan ;
Wu, Hua .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2024, 32 (06) :1277-1289
[42]   The Modulational Instability for a Generalized Korteweg-de Vries Equation [J].
Bronski, Jared C. ;
Johnson, Mathew A. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (02) :357-400
[43]   A nonlinear inverse problem of the Korteweg-de Vries equation [J].
Lu, Shengqi ;
Chen, Miaochao ;
Liu, Qilin .
BULLETIN OF MATHEMATICAL SCIENCES, 2019, 9 (03)
[44]   STOCHASTIC KORTEWEG-DE VRIES EQUATION DRIVEN BY FRACTIONAL BROWNIAN MOTION [J].
Wang, Guolian ;
Guo, Boling .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (11) :5255-5272
[45]   Effect of a localized random forcing term on the Korteweg-de Vries equation [J].
Debussche, A ;
Printems, J .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2001, 3 (03) :183-206
[46]   Rare-Event Simulation for the Stochastic Korteweg-de Vries Equation [J].
Xu, Gongjun ;
Lin, Guang ;
Liu, Jingchen .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2014, 2 (01) :698-716
[47]   Solitary Waves and Their Interactions in the Cylindrical Korteweg-De Vries Equation [J].
Hu, Wencheng ;
Ren, Jingli ;
Stepanyants, Yury .
SYMMETRY-BASEL, 2023, 15 (02)
[48]   Null Controllability with Constraints on the State for the Korteweg-de Vries Equation [J].
Mo Chen .
Acta Applicandae Mathematicae, 2016, 146 :17-28
[49]   A NEW UNIQUE CONTINUATION PROPERTY FOR THE KORTEWEG-DE VRIES EQUATION [J].
Chen, Mo ;
Gao, Peng .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 90 (01) :90-98
[50]   Lagrangian time-discretization of the Korteweg-de Vries equation [J].
Penskoi, AV .
PHYSICS LETTERS A, 2000, 269 (04) :224-229