A lattice Boltzmann model for the Korteweg-de Vries equation with two conservation laws

被引:29
作者
Zhang, Jianying [1 ]
Yan, Guangwu [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
关键词
Lattice Boltzmann model; Higher-order moment method; Korteweg-de Vries equation; SIMULATION; SOLITONS; FLOWS;
D O I
10.1016/j.cpc.2008.12.027
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A lattice Boltzmann model for the Korteweg-de Vries (KdV) equation is presented by using the higher-order moment method. In contrast to the previous lattice Boltzmann model to the KdV equation, our method has higher-order accuracy. Two key steps in the development of this model are the addition of a momentum conservation condition. and the construction of a correlation between the first conservation law and the second conservation law. The numerical example shows the higher-order moment method can be used to raise the truncation error of the lattice Boltzmann scheme. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1054 / 1062
页数:9
相关论文
共 50 条
[31]   GLOBAL CONTROLLABILITY OF A NONLINEAR KORTEWEG-DE VRIES EQUATION [J].
Chapouly, Marianne .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (03) :495-521
[32]   The stochastic Korteweg-de Vries equation on a bounded domain [J].
Gao, Peng .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 310 :97-111
[33]   Whitham theory for perturbed Korteweg-de Vries equation [J].
Kamchatnov, A. M. .
PHYSICA D-NONLINEAR PHENOMENA, 2016, 333 :99-106
[34]   Exact boundary controllability for Korteweg-de Vries equation [J].
Salem, Ali .
INTELLIGENT SYSTEMS AND AUTOMATION, 2009, 1107 :231-236
[35]   Convergence of the Solutions on the Generalized Korteweg-de Vries Equation [J].
Coclite, Giuseppe Maria ;
di Ruvo, Lorenzo .
MATHEMATICAL MODELLING AND ANALYSIS, 2016, 21 (02) :239-259
[36]   The Korteweg-de Vries equation on a metric star graph [J].
Cavalcante, Marcio .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (05)
[37]   Renormalization in the cauchy problem for the Korteweg-de Vries equation [J].
Zakharov, S. V. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 175 (02) :592-595
[38]   The Korteweg-de Vries equation on the half-line [J].
Fokas, Athanassios S. ;
Himonas, A. Alexandrou ;
Mantzavinos, Dionyssios .
NONLINEARITY, 2016, 29 (02) :489-527
[39]   Numerical Algorithms for Solutions of Korteweg-de Vries Equation [J].
Korkmaz, Alper .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (06) :1504-1521
[40]   DISPERSIVE SCHEMES FOR THE CRITICAL KORTEWEG-DE VRIES EQUATION [J].
Audiard, Corentin .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (14) :2603-2646