A lattice Boltzmann model for the Korteweg-de Vries equation with two conservation laws

被引:29
作者
Zhang, Jianying [1 ]
Yan, Guangwu [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
关键词
Lattice Boltzmann model; Higher-order moment method; Korteweg-de Vries equation; SIMULATION; SOLITONS; FLOWS;
D O I
10.1016/j.cpc.2008.12.027
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A lattice Boltzmann model for the Korteweg-de Vries (KdV) equation is presented by using the higher-order moment method. In contrast to the previous lattice Boltzmann model to the KdV equation, our method has higher-order accuracy. Two key steps in the development of this model are the addition of a momentum conservation condition. and the construction of a correlation between the first conservation law and the second conservation law. The numerical example shows the higher-order moment method can be used to raise the truncation error of the lattice Boltzmann scheme. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1054 / 1062
页数:9
相关论文
共 50 条
  • [21] On the Singular Solutions of the Korteweg-de Vries Equation
    Pokhozhaev, S. I.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 741 - 747
  • [22] Neumann problem for the Korteweg-de Vries equation
    Hayashi, N
    Kaikina, EI
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 225 (01) : 168 - 201
  • [23] Nanopteron solution of the Korteweg-de Vries equation
    Wang, Jianyong
    Tang, Xiaoyan
    Lou, Senyue
    Gao, Xiaonan
    Jia, Man
    EPL, 2014, 108 (02)
  • [24] Noncommutative Korteweg-de Vries and modified Korteweg-de Vries hierarchies via recursion methods
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [25] Solving unsteady Korteweg-de Vries equation and its two alternatives
    Khan, Kamruzzaman
    Akbar, M. Ali
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) : 2752 - 2760
  • [26] On the structure of the two-soliton interaction for the Korteweg-de Vries equation
    Kovalyov, M
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 152 (02) : 431 - 438
  • [27] A small time solutions for the Korteweg-de Vries equation
    Kutluay, S
    Bahadir, AR
    Özdes, A
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 107 (2-3) : 203 - 210
  • [28] Multisymplectic box schemes and the Korteweg-de Vries equation
    Ascher, UM
    McLachlan, RI
    APPLIED NUMERICAL MATHEMATICS, 2004, 48 (3-4) : 255 - 269
  • [29] Renormalization in the cauchy problem for the Korteweg-de Vries equation
    S. V. Zakharov
    Theoretical and Mathematical Physics, 2013, 175 : 592 - 595
  • [30] Output feedback stabilization of the Korteweg-de Vries equation
    Marx, Swann
    Cerpa, Eduardo
    AUTOMATICA, 2018, 87 : 210 - 217