A lattice Boltzmann model for the Korteweg-de Vries equation with two conservation laws

被引:29
作者
Zhang, Jianying [1 ]
Yan, Guangwu [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
关键词
Lattice Boltzmann model; Higher-order moment method; Korteweg-de Vries equation; SIMULATION; SOLITONS; FLOWS;
D O I
10.1016/j.cpc.2008.12.027
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A lattice Boltzmann model for the Korteweg-de Vries (KdV) equation is presented by using the higher-order moment method. In contrast to the previous lattice Boltzmann model to the KdV equation, our method has higher-order accuracy. Two key steps in the development of this model are the addition of a momentum conservation condition. and the construction of a correlation between the first conservation law and the second conservation law. The numerical example shows the higher-order moment method can be used to raise the truncation error of the lattice Boltzmann scheme. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1054 / 1062
页数:9
相关论文
共 50 条
[21]   On the Singular Solutions of the Korteweg-de Vries Equation [J].
Pokhozhaev, S. I. .
MATHEMATICAL NOTES, 2010, 88 (5-6) :741-747
[22]   Neumann problem for the Korteweg-de Vries equation [J].
Hayashi, N ;
Kaikina, EI .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 225 (01) :168-201
[23]   Nanopteron solution of the Korteweg-de Vries equation [J].
Wang, Jianyong ;
Tang, Xiaoyan ;
Lou, Senyue ;
Gao, Xiaonan ;
Jia, Man .
EPL, 2014, 108 (02)
[24]   Noncommutative Korteweg-de Vries and modified Korteweg-de Vries hierarchies via recursion methods [J].
Carillo, Sandra ;
Schiebold, Cornelia .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
[25]   Solving unsteady Korteweg-de Vries equation and its two alternatives [J].
Khan, Kamruzzaman ;
Akbar, M. Ali .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) :2752-2760
[26]   On the structure of the two-soliton interaction for the Korteweg-de Vries equation [J].
Kovalyov, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 152 (02) :431-438
[27]   A small time solutions for the Korteweg-de Vries equation [J].
Kutluay, S ;
Bahadir, AR ;
Özdes, A .
APPLIED MATHEMATICS AND COMPUTATION, 2000, 107 (2-3) :203-210
[28]   Multisymplectic box schemes and the Korteweg-de Vries equation [J].
Ascher, UM ;
McLachlan, RI .
APPLIED NUMERICAL MATHEMATICS, 2004, 48 (3-4) :255-269
[29]   Renormalization in the cauchy problem for the Korteweg-de Vries equation [J].
S. V. Zakharov .
Theoretical and Mathematical Physics, 2013, 175 :592-595
[30]   Output feedback stabilization of the Korteweg-de Vries equation [J].
Marx, Swann ;
Cerpa, Eduardo .
AUTOMATICA, 2018, 87 :210-217