Positive solutions of a Schrodinger equation with critical nonlinearity

被引:58
|
作者
Clapp, M [1 ]
Ding, YH
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Chinese Acad Sci, Inst Math, AMSS, Beijing 100080, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2004年 / 55卷 / 04期
关键词
nonlinear Schrodinger equation; critical nonlinearity; localized solutions; potential well;
D O I
10.1007/s00033-004-1084-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear Schrodinger equation -Deltau + lambdaa(x)u = muu + u(2*-1), u is an element of R-N, with critical exponent 2* = 2N/(N - 2), N greater than or equal to 4, where a greater than or equal to 0 has a potential well. Using variational methods we establish existence and multiplicity of positive solutions which localize near the potential well for mu small and lambda large.
引用
收藏
页码:592 / 605
页数:14
相关论文
共 50 条
  • [41] Dynamical stricture of optical soliton solutions and variational principle of nonlinear Schrodinger equation with Kerr law nonlinearity
    Seadawy, Aly R.
    Alsaedi, Bayan A.
    MODERN PHYSICS LETTERS B, 2024, 38 (28):
  • [42] Stability of exact solutions of the (2+1)-dimensional nonlinear Schrodinger equation with arbitrary nonlinearity parameter κ
    Cooper, Fred
    Khare, Avinash
    Charalampidis, Efstathios G.
    Dawson, John F.
    Saxena, Avadh
    PHYSICA SCRIPTA, 2023, 98 (01)
  • [43] Positive multi-bump solutions for the Schrodinger equation with slow decaying competing potentials
    Tang, Boling
    Guo, Hui
    Wang, Tao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
  • [44] MARTINGALE SOLUTIONS AND INVARIANT MEASURES FOR THE STOCHASTIC STRONGLY DAMPED WAVE EQUATION WITH CRITICAL NONLINEARITY
    Li, Yanjiao
    Li, Xiaojun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (06) : 1587 - 1627
  • [45] Multiplicity of solutions of perturbed Schrödinger equation with electromagnetic fields and critical nonlinearity in RN
    Sihua Liang
    Yueqiang Song
    Boundary Value Problems, 2014
  • [46] Multiple solutions for a semiclassical Schrodinger equation
    Zhang, Jian
    Zhao, Fukun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 1834 - 1842
  • [47] Exact Solutions to the Nonlinear Schrodinger Equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 : 1 - +
  • [48] On Radial Solutions of the Schrodinger Type Equation
    Chabrowski, Jan H.
    Grotowski, Joseph F.
    ADVANCED NONLINEAR STUDIES, 2011, 11 (02) : 295 - 310
  • [49] Envelope solutions to nonlinear Schrodinger equation
    Li, XZ
    Zhang, JL
    Wang, YM
    Wang, ML
    ACTA PHYSICA SINICA, 2004, 53 (12) : 4045 - 4051
  • [50] Generalized solutions to the cubic Schrodinger equation
    Bu, C
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (07) : 769 - 774