Positive solutions of a Schrodinger equation with critical nonlinearity

被引:58
|
作者
Clapp, M [1 ]
Ding, YH
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Chinese Acad Sci, Inst Math, AMSS, Beijing 100080, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2004年 / 55卷 / 04期
关键词
nonlinear Schrodinger equation; critical nonlinearity; localized solutions; potential well;
D O I
10.1007/s00033-004-1084-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear Schrodinger equation -Deltau + lambdaa(x)u = muu + u(2*-1), u is an element of R-N, with critical exponent 2* = 2N/(N - 2), N greater than or equal to 4, where a greater than or equal to 0 has a potential well. Using variational methods we establish existence and multiplicity of positive solutions which localize near the potential well for mu small and lambda large.
引用
收藏
页码:592 / 605
页数:14
相关论文
共 50 条
  • [1] Positive solutions of a Schrödinger equation with critical nonlinearity
    Mónica Clapp
    Yanheng Ding
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2004, 55 : 592 - 605
  • [2] Multiple positive solutions for a nonlinear Schrodinger equation
    Bartsch, T
    Wang, ZQ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (03): : 366 - 384
  • [3] Multiplicity of solutions of perturbed Schrodinger equation with electromagnetic fields and critical nonlinearity in RN
    Liang, Sihua
    Song, Yueqiang
    BOUNDARY VALUE PROBLEMS, 2014, : 1 - 14
  • [4] Positive solutions for a nonlocal Schrodinger-Newton system involving critical nonlinearity
    Zhang, Jia-Feng
    Lei, Chun-Yu
    Guo, Liu-Tao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (08) : 1966 - 1974
  • [5] Blowup for biharmonic Schrodinger equation with critical nonlinearity
    Thanh Viet Phan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02):
  • [6] SOLUTIONS OF PERTURBED SCHRODINGER EQUATIONS WITH ELECTROMAGNETIC FIELDS AND CRITICAL NONLINEARITY
    Liang, Sihua
    Zhang, Jihui
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2011, 54 : 131 - 147
  • [7] Modulation of localized solutions for the Schrodinger equation with logarithm nonlinearity
    Calaca, L.
    Avelar, A. T.
    Bazeia, D.
    Cardoso, W. B.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) : 2928 - 2934
  • [8] Positive and sign-changing solutions of a Schrodinger-Poisson system involving a critical nonlinearity
    Huang, Lirong
    Rocha, Eugenio M.
    Chen, Jianqing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) : 55 - 69
  • [9] Solutions of Schrodinger equations with inverse square potential and critical nonlinearity
    Deng, Yinbin
    Jin, Lingyu
    Peng, Shuangjie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (05) : 1376 - 1398
  • [10] p-Kirchhoff Modified Schrodinger Equation with Critical Nonlinearity in RN
    Liang, Sihua
    Liu, Han
    Zhang, Deli
    RESULTS IN MATHEMATICS, 2024, 79 (02)