Representations of the small nonstandard quantum groups

被引:9
作者
Su, Dong [1 ]
Yang, Shilin [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonstandard quantum group; indecomposable module; tensor product; GREEN RINGS; MODULES; ALGEBRA;
D O I
10.1080/00927872.2019.1612412
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the representations of a class of small nonstandard quantum group over which the isomorphism classes of all indecomposable modules are classified, and the decomposition formulas of the tensor product of arbitrary indecomposable modules and simple (or projective) modules are established. The projective class rings and Grothendieck rings of are also characterized.
引用
收藏
页码:5039 / 5062
页数:24
相关论文
共 29 条
  • [1] THE MULTIPARAMETRIC NONSTANDARD DEFORMATION OF A(N-1)
    AGHAMOHAMMADI, A
    KARIMIPOUR, V
    ROUHANI, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (03): : L75 - L82
  • [2] REPRESENTATIONS OF QUANTUM ALGEBRAS
    ANDERSEN, HH
    POLO, P
    KEXIN, W
    [J]. INVENTIONES MATHEMATICAE, 1991, 104 (01) : 1 - 59
  • [3] INJECTIVE-MODULES FOR QUANTUM ALGEBRAS
    ANDERSEN, HH
    POLO, P
    WEN, KX
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (03) : 571 - 604
  • [4] [Anonymous], 1990, J. Am. Math. Soc., DOI 10.2307/1990988
  • [5] [Anonymous], 2006, London Mathematical Society Student Texts
  • [6] Auslander M., 1995, REPRESENTATION THEOR, DOI [10.1017/CBO9780511623608, DOI 10.1017/CBO9780511623608]
  • [7] INDECOMPOSABLE RESTRICTED REPRESENTATIONS OF QUANTUM SL(2)
    CHARI, V
    PREMET, A
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1994, 30 (02) : 335 - 352
  • [8] The Green Ring of Drinfeld Double D(H 4)
    Chen, Hui-Xiang
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (05) : 1457 - 1483
  • [9] Chen HX, 2014, P AM MATH SOC, V142, P765
  • [10] WEAK HOPF ALGEBRAS CORRESPONDING TO NON-STANDARD QUANTUM GROUPS
    Cheng, Cheng
    Yang, Shilin
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (02) : 463 - 484