L2-contraction for shock waves of scalar viscous conservation laws

被引:31
作者
Kang, Moon-Jin [1 ]
Vasseur, Alexis F. [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2017年 / 34卷 / 01期
基金
新加坡国家研究基金会;
关键词
Viscous conservation laws; Shock wave; Stability; Contraction; Relative entropy; INCOMPRESSIBLE FLUID-MECHANICS; RELATIVE ENTROPY; BOLTZMANN EQUATIONS; KINETIC-EQUATIONS; ASYMPTOTIC STABILITY; NONLINEAR STABILITY; DYNAMIC LIMITS; GAS-DYNAMICS; CONVERGENCE;
D O I
10.1016/j.anihpc.2015.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the L-2-contraction up to a shift for viscous shocks of scalar viscous conservation laws with strictly convex fluxes in one space dimension. In the case of a flux which is a small perturbation of the quadratic Burgers flux, we show that any viscous shock induces a contraction in L-2, up to a shift. That is, the L-2 norm of the difference of any solution of the viscous conservation law, with an appropriate shift of the shock wave, does not increase in time. If, in addition, the difference between the initial value of the solution and the shock wave is also bounded in L-1, the L-2 norm of the difference converges at the optimal rate t(-1/4). Both results do not involve any smallness condition on the initial value, nor on the size of the shock. In this context of small perturbations of the quadratic Burgers flux, the result improves the Choi and Vasseur's result in [7]. However, we show that the L-2-contraction up to a shift does not hold for every convex flux. We construct a smooth strictly convex flux, for which the L-2-contraction does not hold any more even along any Lipschitz shift. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:139 / 156
页数:18
相关论文
共 37 条
[1]   FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, D .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :323-344
[2]   FLUID DYNAMIC LIMITS OF KINETIC EQUATIONS-II CONVERGENCE PROOFS FOR THE BOLTZMANN-EQUATION [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, CD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (05) :667-753
[3]   From kinetic equations to multidimensional isentropic gas dynamics before shocks [J].
Berthelin, F ;
Vasseur, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) :1807-1835
[4]   From Discrete Velocity Boltzmann Equations to Gas Dynamics Before Shocks [J].
Berthelin, Florent ;
Tzavaras, Athanasios E. ;
Vasseur, Alexis .
JOURNAL OF STATISTICAL PHYSICS, 2009, 135 (01) :153-173
[5]   Contractive metrics for scalar conservation laws [J].
Bolley, F ;
Brenier, Y ;
Loeper, G .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (01) :91-107
[6]  
CARRILLO JA, 2007, B UNIONE MAT ITAL, V10, P277
[7]   SHORT-TIME STABILITY OF SCALAR VISCOUS SHOCKS IN THE INVISCID LIMIT BY THE RELATIVE ENTROPY METHOD [J].
Choi, Kyudong ;
Vasseur, Alexis F. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (02) :1405-1418
[8]  
Chua KS, 2000, INDIANA U MATH J, V49, P143
[9]  
DAFERMOS CM, 1979, ARCH RATION MECH AN, V70, P167, DOI 10.1007/BF00250353
[10]  
Freistuhler H, 1998, COMMUN PUR APPL MATH, V51, P291, DOI 10.1002/(SICI)1097-0312(199803)51:3<291::AID-CPA4>3.3.CO