Fractional conductivity in 2D and 3D crystals

被引:6
作者
Sidharth, B. G. [1 ]
Das, Abhishek [1 ]
Valluri, S. R. [2 ]
机构
[1] BM Birla Sci Ctr, Hyderabad 500063, Andhra Pradesh, India
[2] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2018年 / 133卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
LAMBERT W FUNCTION; ZITTERBEWEGUNG; GRAPHENE; LIMIT;
D O I
10.1140/epjp/i2018-11965-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we show that the phenomenon of fractional quantum Hall effect can be obtained for 2D and 3D crystal structures, using the noncommutative nature of spacetime and the Lambert W function. This fractional conductivity has been shown to be a consequence of the noncommutative geometry underlying the structure of graphene. Also, it has been shown, for graphene, that in the 3D case the conductivity is extremely small and depends on the self- energy that arises due to random fluctuations or zitterbewegung.
引用
收藏
页数:6
相关论文
共 23 条
[1]   THE NONCOMMUTATIVE GEOMETRY OF THE QUANTUM HALL-EFFECT [J].
BELLISSARD, J ;
VANELST, A ;
SCHULZBALDES, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5373-5451
[2]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359
[3]   Noncommutative geometry of Zitterbewegung [J].
Eckstein, Michal ;
Franco, Nicolas ;
Miller, Tomasz .
PHYSICAL REVIEW D, 2017, 95 (06)
[4]  
Katsnelson MI, 2006, EUR PHYS J B, V51, P157, DOI 10.1140/epjb/e200S-00203-1
[5]   Relativistic electron localization and the lack of Zitterbewegung -: art. no. 043004 [J].
Krekora, P ;
Su, Q ;
Grobe, R .
PHYSICAL REVIEW LETTERS, 2004, 93 (04) :043004-1
[8]   Gapless layered three-dimensional fractional quantum Hall states [J].
Levin, Michael ;
Fisher, Matthew P. A. .
PHYSICAL REVIEW B, 2009, 79 (23)
[9]   Direct Neutrino Mass Experiments [J].
Mertens, Susanne .
XIV INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2015), PTS 1-7, 2016, 718
[10]   Tutorial: The quantum finite square well and the Lambert W function [J].
Roberts, Ken ;
Valluri, S. R. .
CANADIAN JOURNAL OF PHYSICS, 2017, 95 (02) :105-110