Mathematical Model of Formation of a Crystallographic Shear Zone in the Representation of a Piecewise-Continuous Closed Dislocation Loop

被引:5
作者
Kolupaeva, S. N. [1 ]
Petelin, A. E. [1 ,2 ]
机构
[1] Tomsk State Univ Architecture & Bldg, Tomsk, Russia
[2] Natl Res Tomsk State Univ, Tomsk, Russia
关键词
mathematical modeling; tension of a dislocation loop; crystallographic slip; shear zone;
D O I
10.1007/s11182-014-0220-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A mathematical model is devised for the formation of a crystallographic shear zone for a closed piecewisecontinuous dislocation loop which is represented in its initial configuration by a regular polygon with sides that are as small as desired and which preserves its polygonal shape as it expands. The model takes into account the orientational dependence of the line tension of the dislocation loop, and of the resistance from a dislocation pileup and generation of point defects on the orientation of the Burgers vector relative to the dislocation line.
引用
收藏
页码:152 / 158
页数:7
相关论文
共 11 条
[1]  
Berner R., 1965, PLASTIC DEFORMATION
[2]  
Hirth J. P., 1968, Theory of Dislocations, V1
[3]  
Kolupaeva S. N., 2011, VESTN TOMSK GOSUD AR, P159
[4]  
[Колупаева Светлана Николаевна Kolupaeva Svetlana Nikolaevna], 2012, [Вестник Пермского национального исследовательского политехнического университета. Механика, PNRPU Mechanics Bulletin, Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika], P20
[5]  
Petelin A. E., 2010, IZV TOMSK POLITEKH, V316, P141
[6]  
Pfeiffer K. H., 1965, PHYS STATUS SOLIDI, V8, P517
[7]  
Popov L. E., 2000, RUSS PHYS J, V43, P71
[8]  
Popov L. E., 1984, Plastic Deformation of Alloys
[9]  
Puspesheva S. I., 2000, FIZICH MEZOMEKH, V3, P61
[10]  
Suzuki T, 1991, Dislocation Dynamics and Plasticity