ISOMETRIC EMBEDDINGS OF KAHLER-RICCI SOLITONS IN THE COMPLEX PROJECTIVE SPACE

被引:4
作者
Bedulli, Lucio [1 ]
Gori, Anna [2 ]
机构
[1] Univ Aquila, Dipartimento Matemat, I-67100 Laquila, Italy
[2] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
COMPLETE-INTERSECTIONS; MANIFOLDS;
D O I
10.1090/S0002-9939-2014-12028-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a compact complex manifold endowed with a nontrivial Kahler-Ricci soliton cannot be isometrically embedded in the Fubini-Study complex projective space as a complete intersection.
引用
收藏
页码:1777 / 1781
页数:5
相关论文
共 11 条
[1]  
BESSE AL, 1987, ERGEBNISSE MATH IHRE, V10
[2]   ISOMETRIC IMBEDDING OF COMPLEX MANIFOLDS [J].
CALABI, E .
ANNALS OF MATHEMATICS, 1953, 58 (01) :1-23
[3]   EINSTEIN COMPLETE INTERSECTIONS IN COMPLEX PROJECTIVE SPACE [J].
HANO, JI .
MATHEMATISCHE ANNALEN, 1975, 216 (03) :197-208
[4]  
Hulin D., 2000, J. Geom. Anal, V10, P525, DOI DOI 10.1007/BF02921947
[5]  
Koiso N., 1990, Recent Topics in Diff Anal Geom, V18-I, P327
[6]  
KOLLAR J, 1992, J DIFFER GEOM, V36, P765
[7]   On the Futaki invariants of complete intersections [J].
Lu, ZQ .
DUKE MATHEMATICAL JOURNAL, 1999, 100 (02) :359-372
[8]   Kahler-Ricci solitons on homogeneous toric bundles [J].
Podesta, Fabio ;
Spiro, Andrea .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 642 :109-127
[9]  
Takeuchi M., 1978, Japan. J. Math. (N.S.), V4, P171, DOI 10.4099/math1924.4.171
[10]   Uniqueness of Kahler-Ricci solitons [J].
Tian, G ;
Zhu, XH .
ACTA MATHEMATICA, 2000, 184 (02) :271-305