Posterior localization of dynein and dorsal-ventral axis formation depend on kinesin in Drosophila oocytes

被引:79
|
作者
Brendza, RP [1 ]
Serbus, LR [1 ]
Saxton, WM [1 ]
Duffy, JB [1 ]
机构
[1] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
关键词
D O I
10.1016/S0960-9822(02)01108-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To establish the major body axes, late Drosophila oocytes localize determinants to discrete cortical positions: bicoid mRNA to the anterior cortex, oskar mRNA to the posterior cortex, and gurken mRNA to the margin of the anterior cortex adjacent to the oocyte nucleus (the "anterodorsal corner") [1-3]. These localizations depend on microtubules [4-7] that are thought to be organized such that plus end-directed motors can move cargoes, like oskar, away from the anterior/lateral surfaces and hence toward the posterior pole [8-10]. Likewise, minus end-directed motors may move cargoes toward anterior destinations [6,11-13]. Contradicting this, cytoplasmic dynein, a minus-end motor, accumulates at the posterior [14]. Here, we report that disruption of the plus-end motor kinesin I causes a shift of dynein from posterior to anterior. This provides an explanation for the dynein paradox, suggesting that dynein is moved as a cargo toward the posterior pole by kinesin-generated forces. However, other results present a new transport polarity puzzle. Disruption of kinesin I causes partial defects in anterior positioning of the nucleus and severe defects in anterodorsal localization of gurken mRNA. Kinesin may generate anterodorsal forces directly, despite the apparent preponderance of minus ends at the anterior cortex. Alternatively, kinesin I may facilitate cytoplasmic dynein-based anterodorsal forces by repositioning dynein toward microtubule plus ends.
引用
收藏
页码:1541 / 1545
页数:5
相关论文
共 50 条
  • [21] Conservation of intracellular Wnt signaling components in dorsal-ventral axis formation in zebrafish
    L. Sumoy
    Julie Kiefer
    D. Kimelman
    Development Genes and Evolution, 1999, 209 : 48 - 58
  • [22] Ventral dominance governs sequential patterns of gene expression across the dorsal-ventral axis of the neuroectoderm in the Drosophila embryo
    Cowden, J
    Levine, M
    DEVELOPMENTAL BIOLOGY, 2003, 262 (02) : 335 - 349
  • [23] Glycosaminoglycans and the establishment of Drosophila embryonic dorsal-ventral polarity
    Stein, DS
    Sen, J
    Goltz, JS
    Stevens, LM
    Fernandez, NQ
    DEVELOPMENTAL BIOLOGY, 1999, 210 (01) : 244 - 244
  • [24] Dorsal-ventral midline signaling in the developing Drosophila eye
    Sato, Atsushi
    Tomlinson, Andrew
    DEVELOPMENT, 2007, 134 (04): : 659 - 667
  • [25] Establishment of dorsal-ventral and terminal pattern in the Drosophila embryo
    Stein, David S.
    Stevens, Leslie M.
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 1991, 1 (02) : 247 - 254
  • [26] The role of cytoplasmic polyadenylation in Drosophila dorsal-ventral patterning
    Strickland, JSS
    DEVELOPMENTAL BIOLOGY, 1997, 186 (02) : A159 - A159
  • [27] The Dorsal-related immunity factor (Dif) can define the dorsal-ventral axis of polarity in the Drosophila embryo
    Stein, D
    Goltz, JS
    Jurcsak, J
    Stevens, L
    DEVELOPMENT, 1998, 125 (11): : 2159 - 2169
  • [28] EXTRACELLULAR MORPHOGENS IN DROSOPHILA EMBRYONIC DORSAL-VENTRAL PATTERNING
    ANDERSON, KV
    SCHNEIDER, DS
    MORISATO, D
    JIN, Y
    FERGUSON, EL
    COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1992, 57 : 409 - 417
  • [29] Patterning the dorsal-ventral axis of the wasp Nasonia vitripennis
    Buchta, Thomas
    Oezueak, Orhan
    Stappert, Dominik
    Roth, Siegfried
    Lynch, Jeremy A.
    DEVELOPMENTAL BIOLOGY, 2013, 381 (01) : 189 - 202
  • [30] THE ORIENTATION OF THE DORSAL-VENTRAL AXIS OF ZEBRAFISH IS INFLUENCED BY GRAVITATION
    WACKER, S
    HERRMANN, K
    BERKING, S
    ROUXS ARCHIVES OF DEVELOPMENTAL BIOLOGY, 1994, 203 (05): : 281 - 283