Modification of vertically aligned carbon nanotube arrays with palladium nanoparticles for electrocatalytic reduction of oxygen

被引:23
作者
Ye, Jian-Shan [1 ]
Bai, Yan-Cui [1 ]
Zhang, Wei-De [1 ]
机构
[1] S China Univ Technol, Sch Chem & Chem Engn, Nano Sci Res Ctr, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Oxygen reduction; Pd nanoparticles; Carbon nanotubes; Fuel cell; ELECTRODEPOSITED GOLD ELECTRODES; PLATINUM NANOPARTICLES; OXIDATION; METHANOL; GLUCOSE; DEPOSITION; CATALYSIS; SENSOR; PTRU;
D O I
10.1007/s00604-009-0143-5
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A novel type of palladium nanoparticles-modified multiwalled carbon nanotubes composite-electrode with electrocatalytic activity for oxygen reduction is presented. The nanocomposite was prepared by magnetron sputtering deposition with Pd in Ar atmosphere on MWNTs, which were synthesized on Ta plates by chemical vapor deposition. Both scanning electron microscopy and transmission electron microscopy were employed to observe the surface morphology. The Pd nanoparticles, with diameters around 5 nm, are dispersed at the tips and on the sidewalls of the MWNTs. Voltammetry, amperometry and electrochemical impedance measurements were used to demonstrate the strong electrocatalytic activity of the nanocomposite in acid solution. Compared to the bare MWNT electrode, the PdNPs/MWNT nanocomposite shows a positive shift of the O-2 reduction current at onset potentials from +400 to +500 mV, a concurrent 1.5-fold increase in the O-2 reduction peak current with high stability. The successful preparation of PdNPs/MWNTs nanocomposite by magnetron sputtering deposition opens a new path for an efficient dispersion of promising nanoparticles for fuel cells and O-2 sensors.
引用
收藏
页码:361 / 366
页数:6
相关论文
共 36 条
[1]   Distinct differences in partial oxygen pressure at micrometer ranges in the rat hippocampal region [J].
Andreasen, A ;
Danscher, G ;
Juhl, S ;
Stoltenberg, M ;
Revsbech, NP ;
Jensen, H ;
Jensen, KB .
JOURNAL OF NEUROSCIENCE METHODS, 1997, 72 (01) :15-21
[2]   Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements [J].
Bachtold, A ;
Henny, M ;
Terrier, C ;
Strunk, C ;
Schonenberger, C ;
Salvetat, JP ;
Bonard, JM ;
Forro, L .
APPLIED PHYSICS LETTERS, 1998, 73 (02) :274-276
[3]   Platinum Catalysts Prepared with Functional Carbon Nanotube Defects and Its Improved Catalytic Performance for Methanol Oxidation [J].
Chen, JH ;
Wang, MY ;
Liu, B ;
Fan, Z ;
Cui, KZ ;
Kuang, Y .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (24) :11775-11779
[4]   Electrocatalytic reduction of oxygen by a platinum nanoparticle/carbon nanotube composite electrode [J].
Cui, HF ;
Ye, JS ;
Zhang, WD ;
Wang, J ;
Sheu, FS .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2005, 577 (02) :295-302
[5]   Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation [J].
Cui, Hui-Fang ;
Ye, Jian-Shan ;
Liu, Xiao ;
Zhang, Wei-De ;
Sheu, Fwu-Shan .
NANOTECHNOLOGY, 2006, 17 (09) :2334-2339
[6]  
Dresselhaus G., 1998, PHYS PROPERTIES CARB
[7]   An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes [J].
El-Deab, MS ;
Ohsaka, T .
ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (04) :288-292
[8]   Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes [J].
El-Deab, MS ;
Ohsaka, T .
ELECTROCHIMICA ACTA, 2002, 47 (26) :4255-4261
[9]   Novel three-dimensional electrodes: Electrochemical properties of carbon nanotube ensembles [J].
Li, J ;
Cassell, A ;
Delzeit, L ;
Han, J ;
Meyyappan, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (36) :9299-9305
[10]   Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing [J].
Li, Li-Hua ;
Zhang, Wei-De .
MICROCHIMICA ACTA, 2008, 163 (3-4) :305-311