The CRISPR Growth Spurt: from Bench to Clinic on Versatile Small RNAs

被引:17
作者
Bayat, Hadi [1 ,2 ]
Omidi, Meysam [1 ,2 ]
Rajabibazl, Masoumeh [3 ]
Sabri, Suriana [4 ]
Rahimpour, Azam [1 ,2 ]
机构
[1] Shahid Beheshti Univ Med Sci, Med Nano Technol Tissue Engn Res Ctr, Tehran, Iran
[2] Shahid Beheshti Univ Med Sci, Sch Adv Technol Med, Dept Tissue Engn & Regenerat Med, Tehran, Iran
[3] Shahid Beheshti Univ Med Sci, Sch Med, Dept Clin Biochem, Tehran, Iran
[4] Univ Putra Malaysia, Fac Biotechnol & Biomol Sci, Dept Microbiol, Serdang 43400, Malaysia
关键词
CRISPR-Cas system; DNA repair; adoptive immunity; genome editing; IN-VIVO; GUIDED ENDONUCLEASE; TARGET CLEAVAGE; DNA CLEAVAGE; GENOME; CAS9; GENERATION; NUCLEASES; SYSTEM; COMPLEX;
D O I
10.4014/jmb.1607.07005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Clustered regulatory interspaced short palindromic repeats (CRISPR) in association with CRISPR-associated protein (Cas) is an adaptive immune system, playing a pivotal role in the defense of bacteria and archaea. Ease of handling and cost effectiveness make the CRISPR-Cas system an ideal programmable nuclease tool. Recent advances in understanding the CRISPR-Cas system have tremendously improved its efficiency. For instance, it is possible to recapitulate the chronicle CRISPR-Cas from its infancy and inaugurate a developed version by generating novel variants of Cas proteins, subduing off-target effects, and optimizing of innovative strategies. In summary, the CRISPR-Cas system could be employed in a number of applications, including providing model systems, rectification of detrimental mutations, and antiviral therapies.
引用
收藏
页码:207 / 218
页数:12
相关论文
共 96 条
[21]   Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases [J].
Frock, Richard L. ;
Hu, Jiazhi ;
Meyers, Robin M. ;
Ho, Yu-Jui ;
Kii, Erina ;
Alt, Frederick W. .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :179-186
[22]   Improving CRISPR-Cas nuclease specificity using truncated guide RNAs [J].
Fu, Yanfang ;
Sander, Jeffry D. ;
Reyon, Deepak ;
Cascio, Vincent M. ;
Joung, J. Keith .
NATURE BIOTECHNOLOGY, 2014, 32 (03) :279-284
[23]   Self- processing of ribozyme- flanked RNAs into guide RNAs in vitro and in vivo for CRISPR- mediated genome editing [J].
Gao, Yangbin ;
Zhao, Yunde .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2014, 56 (04) :343-349
[24]   Fusion of catalytically inactive Cas9 to Fokl nuclease improves the specificity of genome modification [J].
Guilinger, John P. ;
Thompson, David B. ;
Liu, David R. .
NATURE BIOTECHNOLOGY, 2014, 32 (06) :577-+
[25]   CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation [J].
Han, Xin ;
Liu, Zongbin ;
Jo, Myeong Chan ;
Zhang, Kai ;
Li, Ying ;
Zeng, Zihua ;
Li, Nan ;
Zu, Youli ;
Qin, Lidong .
SCIENCE ADVANCES, 2015, 1 (07)
[26]   Generation of mutant mice via the CRISPR/Cas9 system using FokI-dCas9 [J].
Hara, Satoshi ;
Tamano, Moe ;
Yamashita, Satoshi ;
Kato, Tomoko ;
Saito, Takeshi ;
Sakuma, Tetsushi ;
Yamamoto, Takashi ;
Inui, Masafumi ;
Takada, Shuji .
SCIENTIFIC REPORTS, 2015, 5
[27]   Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells [J].
Hendel, Ayal ;
Bak, Rasmus O. ;
Clark, Joseph T. ;
Kennedy, Andrew B. ;
Ryan, Daniel E. ;
Roy, Subhadeep ;
Steinfeld, Israel ;
Lunstad, Benjamin D. ;
Kaiser, Robert J. ;
Wilkens, Alec B. ;
Bacchetta, Rosa ;
Tsalenko, Anya ;
Dellinger, Douglas ;
Bruhn, Laurakay ;
Porteus, Matthew H. .
NATURE BIOTECHNOLOGY, 2015, 33 (09) :985-U232
[28]   CRISPR/Cas, the Immune System of Bacteria and Archaea [J].
Horvath, Philippe ;
Barrangou, Rodolphe .
SCIENCE, 2010, 327 (5962) :167-170
[29]   A Cas9 Variant for Efficient Generation of Indel-Free Knockin or Gene-Corrected Human Pluripotent Stem Cells [J].
Howden, Sara E. ;
McColl, Bradley ;
Glaser, Astrid ;
Vadolas, Jim ;
Petrou, Steven ;
Little, Melissa H. ;
Elefanty, Andrew G. ;
Stanley, Edouard G. .
STEM CELL REPORTS, 2016, 7 (03) :508-517
[30]  
Jamal M, 2016, CURR ISSUES MOL BIOL, V20, P1