Maximal algebras of Martindale-like quotients of strongly prime linear Jordan algebras

被引:12
作者
Anquela, JA
García, E
Gómez-Lozano, M
机构
[1] Univ Oviedo, Dept Matemat, Oviedo 33007, Spain
[2] Univ Complutense Madrid, Dept Algebra, E-28040 Madrid, Spain
[3] Univ Malaga, Fac Ciencias, Dept Algebra Geometr & Topol, E-29071 Malaga, Spain
关键词
Martindale associative algebra of quotients; Jordan algebra; central extensions;
D O I
10.1016/j.jalgebra.2004.06.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the existence and give precise descriptions of maximal algebras of Martindale like quotients for arbitrary strongly prime linear Jordan algebras. As a consequence, we show that Zelmanov's classification of strongly prime Jordan algebras can be viewed exactly as the description of their maximal algebras of Martindale-like quotients. As a side result, we show that the Martindale associative algebra of symmetric quotients can be expressed in terms of the symmetrized product, i.e., in purely Jordan terms. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:367 / 383
页数:17
相关论文
共 21 条
[1]   Simplicity of the heart of a nondegenerate Jordan system [J].
Anquela, JA ;
Cortés, T ;
García, E .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 172 (2-3) :119-137
[2]   Herstein's theorems and simplicity of hermitian Jordan systems [J].
Anquela, JA ;
Cortés, T ;
García, E .
JOURNAL OF ALGEBRA, 2001, 246 (01) :193-214
[3]   Strong primeness of hermitian Jordan systems [J].
Anquela, JA ;
Cortes, T ;
McCrimmon, K ;
Montaner, F .
JOURNAL OF ALGEBRA, 1997, 198 (01) :311-326
[4]  
FERNANDEZLOPEZ A, 2002, J ALGEBRA, V248, P397
[5]   The scalar center for quadratic Jordan algebras [J].
Fulgham, B .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (03) :879-893
[6]  
GARCIA E, IN PRESS J PURE APPL
[7]  
JACOBSON N, 1968, AM MATH SOC C PUBL, V39, P75395
[8]   MACDONALDS THEOREM FOR QUADRATIC JORDAN ALGEBRAS [J].
LEWAND, RE ;
MCCRIMMO.K .
PACIFIC JOURNAL OF MATHEMATICS, 1970, 35 (03) :681-&
[9]  
Loos O., 1975, Lect. Notes. in Math, V460
[10]   PRIME RINGS SATISFYING A GENERALIZED POLYNOMIAL IDENTITY [J].
MARTINDALE, WS .
JOURNAL OF ALGEBRA, 1969, 12 (04) :576-+