DENSITY PROBLEMS ON VECTOR BUNDLES AND MANIFOLDS

被引:11
作者
Bandara, Lashi [1 ]
机构
[1] Australian Natl Univ, Ctr Math & Its Applicat, Canberra, ACT 0200, Australia
关键词
Density problems; first order operators on vector bundles; Laplacian on vector bundles; second order Sobolev spaces on manifolds; SQUARE-ROOT PROBLEM;
D O I
10.1090/S0002-9939-2014-12284-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study some canonical differential operators on vector bundles over smooth, complete Riemannian manifolds. Under very general assumptions, we show that smooth, compactly supported sections are dense in the domains of these operators. Furthermore, we show that smooth, compactly supported functions are dense in second order Sobolev spaces on such manifolds under the sole additional assumption that the Ricci curvature is uniformly bounded from below.
引用
收藏
页码:2683 / 2695
页数:13
相关论文
共 11 条
[1]   The solution of the Kato square root problem for second order elliptic operators on Rn [J].
Auscher, P ;
Hofmann, S ;
Lacey, M ;
McIntosh, A ;
Tchamitchian, P .
ANNALS OF MATHEMATICS, 2002, 156 (02) :633-654
[2]   Quadratic estimates and functional calculi of perturbed Dirac operators [J].
Axelsson, A ;
Keith, S ;
McIntosh, A .
INVENTIONES MATHEMATICAE, 2006, 163 (03) :455-497
[3]   The Kato square root problem for mixed boundary value problems [J].
Axelsson, Andreas ;
Keith, Stephen ;
McIntosh, Alan .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 :113-130
[4]  
Bandara Lashi, 2012, ARXIV12030373V2
[5]  
Chernoff P.R., 1973, J. Funct. Anal., V12, P401, DOI 10.1016/0022-1236(73)90003-7
[7]  
Hebey Emmanuel, 1999, COURANT LECT NOTES M, V5
[8]  
Kato Tosio, 1976, GRUND MATH WISS, V132
[9]   The Kato square root problem on submanifolds [J].
Morris, Andrew J. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 86 :879-910
[10]  
Roelcke W., 1960, Math. Nachr., V21, P131