Image Forgery Detection Using Deep Learning by Recompressing Images

被引:28
|
作者
Ali, Syed Sadaf [1 ]
Ganapathi, Iyyakutti Iyappan [2 ,3 ]
Ngoc-Son Vu [1 ]
Ali, Syed Danish [4 ]
Saxena, Neetesh [5 ]
Werghi, Naoufel [2 ,3 ]
机构
[1] CY Cergy Paris Univ, CNRS, ENSEA, ETIS,UMR 8051, F-95000 Cergy, France
[2] Khalifa Univ, C2PS, Abu Dhabi 127788, U Arab Emirates
[3] Khalifa Univ, KUCARS, Abu Dhabi 127788, U Arab Emirates
[4] Machine Intelligence Res MIR Labs Gwalior, Gwalior 474001, India
[5] Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF10 3AT, Wales
关键词
convolutional neural networks; neural networks; forgery detection; image compression; image processing;
D O I
10.3390/electronics11030403
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Capturing images has been increasingly popular in recent years, owing to the widespread availability of cameras. Images are essential in our daily lives because they contain a wealth of information, and it is often required to enhance images to obtain additional information. A variety of tools are available to improve image quality; nevertheless, they are also frequently used to falsify images, resulting in the spread of misinformation. This increases the severity and frequency of image forgeries, which is now a major source of concern. Numerous traditional techniques have been developed over time to detect image forgeries. In recent years, convolutional neural networks (CNNs) have received much attention, and CNN has also influenced the field of image forgery detection. However, most image forgery techniques based on CNN that exist in the literature are limited to detecting a specific type of forgery (either image splicing or copy-move). As a result, a technique capable of efficiently and accurately detecting the presence of unseen forgeries in an image is required. In this paper, we introduce a robust deep learning based system for identifying image forgeries in the context of double image compression. The difference between an image's original and recompressed versions is used to train our model. The proposed model is lightweight, and its performance demonstrates that it is faster than state-of-the-art approaches. The experiment results are encouraging, with an overall validation accuracy of 92.23%.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Forgery detection using multiple light sources for synthetic images
    Kumar, Manoj
    Srivastava, Sangeet
    Uddin, Nafees
    AUSTRALIAN JOURNAL OF FORENSIC SCIENCES, 2019, 51 (03) : 243 - 250
  • [22] An improved detection of blind image forgery using hybrid deep belief network and adaptive fuzzy clustering
    Sushir, Rupesh D.
    Wakde, Dinkar Govindrao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (20) : 29177 - 29205
  • [23] An improved detection of blind image forgery using hybrid deep belief network and adaptive fuzzy clustering
    Rupesh D. Sushir
    Dinkar Govindrao Wakde
    Multimedia Tools and Applications, 2022, 81 : 29177 - 29205
  • [24] Brain Tumor Detection with Deep Learning Methods' Classifier Optimization Using Medical Images
    Guler, Mustafa
    Namli, Ersin
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [25] Forgery Detection of Digital Images Using Teaching-Learning Based Optimization and Principal Component Analysis
    Uma, S.
    Sathya, P. D.
    SENSING AND IMAGING, 2023, 24 (01):
  • [26] Detection of Image Steganography Using Deep Learning and Ensemble Classifiers
    Plachta, Mikolaj
    Krzemien, Marek
    Szczypiorski, Krzysztof
    Janicki, Artur
    ELECTRONICS, 2022, 11 (10)
  • [27] Effectiveness of Image Augmentation Techniques on Detection of Building Characteristics from Street View Images Using Deep Learning
    Han, Jongwon
    Kim, Jaejun
    Kim, Seongkyung
    Wang, Seunghyeon
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 2024, 150 (10)
  • [28] Intrusion Traffic Detection and Characterization using Deep Image Learning
    Kaur, Gurdip
    Lashkari, Arash Habibi
    Rahali, Abir
    2020 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2020, : 55 - 62
  • [29] A Deep Learning Approach for the Detection of Neovascularization in Fundus Images Using Transfer Learning
    Tang, Michael Chi Seng
    Teoh, Soo Siang
    Ibrahim, Haidi
    Embong, Zunaina
    IEEE ACCESS, 2022, 10 : 20247 - 20258
  • [30] Detection of Corrosion Progress using deep learning and image processing
    Ozaki, Shoto
    Nomura, Yasutoshi
    Yamazaki, Hiroshi
    Yamato, Yukihisa
    2022 JOINT 12TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS AND 23RD INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (SCIS&ISIS), 2022,