Convergence of the invariant scheme of the method of fundamental solutions for two-dimensional potential problems in a Jordan region

被引:6
作者
Ogata, Hidenori [1 ]
Katsurada, Masashi [2 ]
机构
[1] Univ Electrocommun, Grad Sch Informat & Engn, Dept Commun Engn & Informat, Chofu, Tokyo 1828585, Japan
[2] Meiji Univ, Sch Sci & Technol, Dept Math, Kawasaki, Kanagawa 2148571, Japan
关键词
Method of fundamental solutions; Charge simulation method; Laplace equation; Invariant scheme; Conformal mapping;
D O I
10.1007/s13160-013-0131-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the invariant scheme of the method of fundamental solutions for two-dimensional potential problems, that is, Dirichlet boundary value problems of the Laplace equation in a Jordan region, with the charge points and the collocation points obtained by a conformal mapping of the exterior of a disk to the exterior of the problem region. By a theoretical error analysis, we show that the approximate solution of the invariant scheme converges to the exact solution exponentially and some unnatural assumptions needed in the conventional scheme are removed in the convergence theorem of the invariant scheme.
引用
收藏
页码:231 / 262
页数:32
相关论文
共 7 条
  • [1] [Anonymous], 1986, Pure and Applied Mathematics (New York)
  • [2] ARNOLD DN, 1983, MATH COMPUT, V41, P383, DOI 10.1090/S0025-5718-1983-0717692-8
  • [3] Katsurada M., 1990, J FS TOKYO U SECTION, V37, P635
  • [4] Katsurada M, 1988, J Fac Sci Univ Tokyo Sect 1A Math, V35, P507
  • [5] Katsurada M., 1994, JAPAN J IND APPL MAT, V11, P47, DOI DOI 10.1007/BF03167213
  • [6] Murota K., 1993, Transactions of the Information Processing Society of Japan, V34, P533
  • [7] Murota K., 1995, Jpn. J. Ind. Appl. Math, V1, P61, DOI [DOI 10.1007/BF03167382, 10.1007/BF03167382]