SMALL BANDWIDTH ASYMPTOTICS FOR DENSITY-WEIGHTED AVERAGE DERIVATIVES

被引:22
作者
Cattaneo, Matias D. [1 ]
Crump, Richard K. [2 ]
Jansson, Michael [3 ,4 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Fed Reserve Bank New York, New York, NY USA
[3] Univ Calif Berkeley, Berkeley, CA 94720 USA
[4] CREATES, Warwick, England
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
CENTRAL-LIMIT-THEOREM; SEMIPARAMETRIC ESTIMATORS; EDGEWORTH EXPANSIONS; QUADRATIC-FORMS; INDEX MODELS; U-STATISTICS; COEFFICIENTS; REGRESSION; EFFICIENCY; VARIANCE;
D O I
10.1017/S0266466613000169
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper proposes (apparently) novel standard error formulas for the density-weighted average derivative estimator of Powell, Stock, and Stoker (Econometrica 57, 1989). Asymptotic validity of the standard errors developed in this paper does not require the use of higher-order kernels, and the standard errors are "robust" in the sense that they accommodate (but do not require) bandwidths that are smaller than those for which conventional standard errors are valid. Moreover, the results of a Monte Carlo experiment suggest that the finite sample coverage rates of confidence intervals constructed using the standard errors developed in this paper coincide (approximately) with the nominal coverage rates across a nontrivial range of bandwidths.
引用
收藏
页码:176 / 200
页数:25
相关论文
共 30 条
[1]  
[Anonymous], 1986, Handbook of Econometrics, DOI DOI 10.1016/S1573-4412(05)80005-4
[2]   Pairwise difference estimation with nonparametric control variables [J].
Aradillas-Lopez, Andres ;
Honore, Bo E. ;
Powell, James L. .
INTERNATIONAL ECONOMIC REVIEW, 2007, 48 (04) :1119-1158
[3]   Robust Data-Driven Inference for Density-Weighted Average Derivatives [J].
Cattaneo, Matias D. ;
Crump, Richard K. ;
Jansson, Michael .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) :1070-1083
[4]   A CENTRAL-LIMIT-THEOREM FOR GENERALIZED QUADRATIC-FORMS [J].
DEJONG, P .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 75 (02) :261-277
[5]   OPTIMUM KERNEL ESTIMATORS OF THE MODE [J].
EDDY, WF .
ANNALS OF STATISTICS, 1980, 8 (04) :870-882
[6]   A central limit theorem for the sum of generalized linear and quadratic forms [J].
Eubank, RL ;
Wang, SJ .
STATISTICS, 1999, 33 (01) :85-91
[7]   Some higher-order theory for a consistent non-parametric model specification test [J].
Fan, YQ ;
Linton, O .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 109 (1-2) :125-154
[8]   A CLASS OF STATISTICS WITH ASYMPTOTICALLY NORMAL DISTRIBUTION [J].
HOEFFDING, W .
ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (03) :293-325
[9]  
Hristache M, 2001, ANN STAT, V29, P595
[10]  
Ichimura H., 2005, IDENTIFICATION INFER, P149, DOI DOI 10.1017/CBO9780511614491.009