Electrodeposition of Ni3Se2/MoSex as a bifunctional electrocatalyst towards highly-efficient overall water splitting

被引:38
|
作者
Tian, Yifan [1 ]
Xue, Xinying [2 ]
Gu, Yu [1 ]
Yang, Zhaoxi [1 ]
Hong, Guo [3 ]
Wang, Chundong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Shihezi Univ, Coll Sci, Dept Phys, Shihezi 832003, Xinjiang, Peoples R China
[3] Univ Macau, Fac Sci & Technol, Dept Phys & Chem, Inst Appl Phys & Mat Engn, Macau, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
HYDROGEN EVOLUTION REACTION; NICKEL FOAM; 3D ELECTRODE; PERFORMANCE; NISE; GROWTH; NANOSTRUCTURES; NANOSHEETS; NETWORK; FOIL;
D O I
10.1039/d0nr07227c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemically splitting water into hydrogen and oxygen plays a significant role in the commercialization of hydrogen energy as well as fuel cells, but it remains a challenge to design and fabricate low-cost and high-efficiency electrocatalysts. Herein, we successfully prepared Ni3Se2/MoSex on nickel foam via a facile electrodeposition method. To understand the electrochemical mechanism occurring in the electrodeposition process, a new model was proposed, providing insight into the nucleation and growth of deposited materials. The as-prepared Ni3Se2/MoSex exhibits splendid electrochemical performance with 82 mV and 270 mV overpotentials to drive a current density of 10 mA cm(-2) in 1 M KOH aqueous solution for HER and OER, respectively. Moreover, a driving potential of 1.57 V is required to reach a current density of 10 mA cm(-2) for a configured full cell with Ni3Se2/MoSex working as both the anode and cathode towards overall water splitting, outperforming the state-of-the-art commercial full cells assembled with noble-based metals. The advanced catalytic performance should be attributed to the numerous in situ formed interfaces, allowing pi-electron transfer from Ni to Mo via O2- bridging, subsequently optimizing the adsorption features of oxygenated species (OER) and favorable Volmer/Heyrovsky reaction (HER). This work offers an effective and scalable fabrication prototype for the preparation of bifunctional electrocatalysts with electrodeposition.
引用
收藏
页码:23125 / 23133
页数:9
相关论文
共 50 条
  • [1] Ni3Se2 film as a non-precious metal bifunctional electrocatalyst for efficient water splitting
    Shi, Jinle
    Hu, Jianming
    Luo, Yonglan
    Sun, Xuping
    Asiri, Abdullah M.
    CATALYSIS SCIENCE & TECHNOLOGY, 2015, 5 (11) : 4954 - 4958
  • [2] Regulating Phase Conversion from Ni3Se2 into NiSe in a Bifunctional Electrocatalyst for Overall Water-Splitting Enhancement
    Zhong, Yueyao
    Chang, Bin
    Shao, Yongliang
    Xu, Chengwei
    Wu, Yongzhong
    Hao, Xiaopeng
    CHEMSUSCHEM, 2019, 12 (09) : 2008 - 2014
  • [3] Controlled Synthesis of Eutectic NiSe/Ni3Se2 Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting
    Zhang, Fangfang
    Pei, Yu
    Ge, Yuancai
    Chu, Hang
    Craig, Steven
    Dong, Pei
    Cao, Jun
    Ajayan, Pulickel M.
    Ye, Mingxin
    Shen, Jianfeng
    ADVANCED MATERIALS INTERFACES, 2018, 5 (08):
  • [4] Rational Design of Vanadium-Modulated Ni3Se2 Nanorod@Nanosheet Arrays as a Bifunctional Electrocatalyst for Overall Water Splitting
    He, Danyang
    Cao, Liyun
    Huang, Jianfeng
    Feng, Yongqiang
    Li, Guodong
    Yang, Dan
    Huang, Qingqing
    Feng, Liangliang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (35): : 12005 - 12016
  • [5] Electrocatalytic overall water splitting on nickel selenide (Ni3Se2)
    Swesi, Abdurazag
    Masud, Jahangir
    Nath, Manashi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [6] Interface effect of Fe doped NiSe/Ni3Se2 heterojunction as highly efficient electrocatalysts for overall water splitting
    Deng, Ruxin
    Yao, Huiqin
    Wang, Yixuan
    Wang, Chaonan
    Zhang, Siqi
    Guo, Shaoshi
    Li, Yongliang
    Ma, Shulan
    CHEMICAL ENGINEERING JOURNAL, 2024, 488
  • [7] CoNi2Se4 as an efficient bifunctional electrocatalyst for overall water splitting
    Amin, Bahareh Golrokh
    Swesi, Abdurazag T.
    Masud, Jahangir
    Nath, Manashi
    CHEMICAL COMMUNICATIONS, 2017, 53 (39) : 5412 - 5415
  • [8] Interface engineering of Ni3Se2@FeOOH heterostructure nanoforests for highly-efficient overall water splitting
    Gao, Junyu
    Ma, Hongqin
    Zhang, Longfei
    Luo, Xinyue
    Yu, Luqi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 893
  • [9] Electrodeposition of Ni3Se2
    Kutyla, Dawid
    Kolczyk, Karolina
    Zabinski, Piotr
    Kowalik, Remigiusz
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) : D700 - D706
  • [10] Electrodeposition of cobalt-iron bimetal phosphide on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting
    Duan, Donghong
    Guo, Desheng
    Gao, Jie
    Liu, Shibin
    Wang, Yunfang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 622 : 250 - 260