Optimized entropic uncertainty for successive projective measurements

被引:28
作者
Baek, Kyunghyun [1 ]
Farrow, Tristan [2 ,3 ]
Son, Wonmin [1 ]
机构
[1] Sogang Univ, Dept Phys, Seoul 121742, South Korea
[2] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 03期
基金
新加坡国家研究基金会;
关键词
QUANTUM MEASUREMENTS; DISTURBANCE; PRINCIPLE; OBSERVABLES;
D O I
10.1103/PhysRevA.89.032108
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We focus here on the uncertainty of an observable Y caused by a precise measurement of X. We illustrate the effect by analyzing the general scenario of two successive measurements of spin components X and Y. We derive an optimized entropic uncertainty limit that quantifies the necessary amount of uncertainty observed in a subsequent measurement of Y. We compare this bound to recently derived error-disturbance relations and discuss how the bound quantifies the information of successive quantum measurements.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Renyi formulation of the entropic uncertainty principle for POVMs [J].
Rastegin, Alexey E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (15)
[32]   Continuous-variable entropic uncertainty relations [J].
Hertz, Anaelle ;
Cerf, Nicolas J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (17)
[33]   The Minimal Length and the Shannon Entropic Uncertainty Relation [J].
Pedram, Pouria .
ADVANCES IN HIGH ENERGY PHYSICS, 2016, 2016
[34]   Holevo bound of entropic uncertainty in Schwarzschild spacetime [J].
Huang, Jin-Long ;
Gan, Wen-Cong ;
Xiao, Yunlong ;
Shu, Fu-Wen ;
Yung, Man-Hong .
EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (07)
[35]   Entropic uncertainty relation in de Sitter space [J].
Jia, Lijuan ;
Tian, Zehua ;
Jing, Jiliang .
ANNALS OF PHYSICS, 2015, 353 :37-47
[36]   Majorization entropic uncertainty relations for quantum operations [J].
Rastegin, Alexey E. ;
Zyczkowski, Karol .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (35)
[37]   Conditional entropic uncertainty relations for Tsallis entropies [J].
Kurzyk, Dariusz ;
Pawela, Lukasz ;
Puchala, Zbigniew .
QUANTUM INFORMATION PROCESSING, 2018, 17 (08)
[38]   On entropic uncertainty relations in the presence of a minimal length [J].
Rastegin, Alexey E. .
ANNALS OF PHYSICS, 2017, 382 :170-180
[39]   Controlling of the Entropic Uncertainty in Open Quantum System [J].
Ji, Yinghua ;
Ke, Qiang ;
Hu, Juju .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (02) :403-414
[40]   Uncertainty Relations from Simple Entropic Properties [J].
Coles, Patrick J. ;
Colbeck, Roger ;
Yu, Li ;
Zwolak, Michael .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)