Optimized entropic uncertainty for successive projective measurements

被引:28
作者
Baek, Kyunghyun [1 ]
Farrow, Tristan [2 ,3 ]
Son, Wonmin [1 ]
机构
[1] Sogang Univ, Dept Phys, Seoul 121742, South Korea
[2] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 03期
基金
新加坡国家研究基金会;
关键词
QUANTUM MEASUREMENTS; DISTURBANCE; PRINCIPLE; OBSERVABLES;
D O I
10.1103/PhysRevA.89.032108
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We focus here on the uncertainty of an observable Y caused by a precise measurement of X. We illustrate the effect by analyzing the general scenario of two successive measurements of spin components X and Y. We derive an optimized entropic uncertainty limit that quantifies the necessary amount of uncertainty observed in a subsequent measurement of Y. We compare this bound to recently derived error-disturbance relations and discuss how the bound quantifies the information of successive quantum measurements.
引用
收藏
页数:6
相关论文
共 50 条
[1]   Entropic Uncertainty Relations for Successive Generalized Measurements [J].
Baek, Kyunghyun ;
Son, Wonmin .
MATHEMATICS, 2016, 4 (02)
[2]   Renyi entropy uncertainty relation for successive projective measurements [J].
Zhang, Jun ;
Zhang, Yang ;
Yu, Chang-shui .
QUANTUM INFORMATION PROCESSING, 2015, 14 (06) :2239-2253
[3]   Optimized entropic uncertainty relations for multiple measurements [J].
Xie, Bo-Fu ;
Ming, Fei ;
Wang, Dong ;
Ye, Liu ;
Chen, Jing-Ling .
PHYSICAL REVIEW A, 2021, 104 (06)
[4]   Entropic uncertainty relations for successive measurements of canonically conjugate observables [J].
Rastegin, Alexey E. .
ANNALEN DER PHYSIK, 2016, 528 (11-12) :835-844
[5]   Entropic Uncertainty Relations for Successive Measurements in the Presence of a Minimal Length [J].
Rastegin, Alexey E. .
ENTROPY, 2018, 20 (05)
[6]   Uncertainty and Certainty Relations for Successive Projective Measurements of a Qubit in Terms of Tsallis' Entropies [J].
Rastegin, Alexey E. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2015, 63 (06) :687-694
[7]   Entropic uncertainty relations for multiple measurements [J].
Liu, Shang ;
Mu, Liang-Zhu ;
Fan, Heng .
PHYSICAL REVIEW A, 2015, 91 (04)
[8]   Measurements of Entropic Uncertainty Relations in Neutron Optics [J].
Demirel, Buelent ;
Sponar, Stephan ;
Hasegawa, Yuji .
APPLIED SCIENCES-BASEL, 2020, 10 (03)
[9]   Relative entropic uncertainty relation [J].
Floerchinger, Stefan ;
Haas, Tobias ;
Hoeber, Ben .
PHYSICAL REVIEW A, 2021, 103 (06)
[10]   Entropic uncertainty bound for open pointer-based simultaneous measurements of conjugate observables [J].
Heese, Raoul ;
Freyberger, Matthias .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (13)