Korean Sign Language Recognition Based on Image and Convolution Neural Network

被引:11
|
作者
Shin, Hyojoo [1 ]
Kim, Woo Je [1 ]
Jang, Kyoung-ae [2 ]
机构
[1] Seoul Natl Univ Sci & Technol, Dept SW Anal & Design, 232 Gongreungro, Seoul, South Korea
[2] Seoul Natl Univ Sci & Technol, Dept Ind & Informat Syst Engn, 232 Gongreungro, Seoul, South Korea
关键词
Korean Sign Language; Convolution Neural Network; Image; Recognition;
D O I
10.1145/3313950.3313967
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The purpose of this paper is to develop a convolution neural network based model for Korean sign language recognition. For this purpose, sign language videos were collected for 10 selected words of Korean sign language and these videos were converted into images to have 9 frames. The images with 9 frames were used as input data for the convolution neural network based model developed in this study. In order to develop the model for Korean sign language recognition, experiments for determining the number of convolution layers was first performed. Second, experiments for the pooling which intentionally reduces the features of the feature map was performed. Third, we conducted an experiment to reduce over fitting in the model learning process. Based on the experiments, we have developed a convolution neural network based model for Korean sign language recognition. The accuracy of the developed model was about 84.5% for the 10 selected Korean sign words.
引用
收藏
页码:52 / 55
页数:4
相关论文
共 50 条
  • [41] Artificial convolution neural network for medical image pattern recognition
    Lo, SCB
    Chan, HP
    Lin, JS
    Li, H
    Freedman, MT
    Mun, SK
    NEURAL NETWORKS, 1995, 8 (7-8) : 1201 - 1214
  • [42] A Traffic Sign Image Recognition and Classification Approach Based on Convolutional Neural Network
    Liu Shangzhen
    2019 11TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2019), 2019, : 408 - 411
  • [43] Image Recognition Algorithm Based on Convolution Neural Network and Particle Swarm Optimization SVM
    Song Zhengcheng
    2018 4TH INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT AND INFORMATION TECHNOLOGY (ICEMIT 2018), 2018, : 1372 - 1376
  • [44] Research on Remote Sensing Image Target Recognition Based on Deep Convolution Neural Network
    Han, Xiaofeng
    Jiang, Tao
    Zhao, Zifei
    Lei, Zhongteng
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (05)
  • [45] Tractor driver fatigue detection based on convolution neural network and facial image recognition
    Lu W.
    Hu H.
    Wang J.
    Wang L.
    Deng Y.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (07): : 192 - 199
  • [46] An Automatic Target Recognition Algorithm for SAR Image Based on Improved Convolution Neural Network
    Qiao Weilei
    Zhang Xinggan
    Fen Ge
    PROCEEDINGS OF THE 2017 12TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2017, : 551 - 555
  • [47] Sign Language Recognition System Using Deep Neural Network
    Suresh, Surejya
    Haridas, Mithun T. P.
    Supriya, M. H.
    2019 5TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION SYSTEMS (ICACCS), 2019, : 614 - 618
  • [48] Selfie Continuous Sign Language Recognition using Neural Network
    Kumar, D. Anil
    Kishore, P. V. V.
    Sastry, A. S. C. S.
    Swamy, P. Reddy Gurunatha
    2016 IEEE ANNUAL INDIA CONFERENCE (INDICON), 2016,
  • [49] Recognition Bangla Sign Language using Convolutional Neural Network
    Islalm, Md Shafiqul
    Rahman, Md Moklesur
    Rahman, Md. Hafizur
    Arifuzzaman, Md
    Sassi, Roberto
    Aktaruzzaman, Md
    2019 INTERNATIONAL CONFERENCE ON INNOVATION AND INTELLIGENCE FOR INFORMATICS, COMPUTING, AND TECHNOLOGIES (3ICT), 2019,
  • [50] Sign Language Recognition using PCA, Wavelet and Neural Network
    Sadeddine, Khadidja
    Chelali, Fatma Zohra
    Djeradi, Rachida
    3RD INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT 2015), 2015,