Korean Sign Language Recognition Based on Image and Convolution Neural Network

被引:11
|
作者
Shin, Hyojoo [1 ]
Kim, Woo Je [1 ]
Jang, Kyoung-ae [2 ]
机构
[1] Seoul Natl Univ Sci & Technol, Dept SW Anal & Design, 232 Gongreungro, Seoul, South Korea
[2] Seoul Natl Univ Sci & Technol, Dept Ind & Informat Syst Engn, 232 Gongreungro, Seoul, South Korea
来源
ICIGP 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS PROCESSING / 2019 5TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY | 2019年
关键词
Korean Sign Language; Convolution Neural Network; Image; Recognition;
D O I
10.1145/3313950.3313967
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The purpose of this paper is to develop a convolution neural network based model for Korean sign language recognition. For this purpose, sign language videos were collected for 10 selected words of Korean sign language and these videos were converted into images to have 9 frames. The images with 9 frames were used as input data for the convolution neural network based model developed in this study. In order to develop the model for Korean sign language recognition, experiments for determining the number of convolution layers was first performed. Second, experiments for the pooling which intentionally reduces the features of the feature map was performed. Third, we conducted an experiment to reduce over fitting in the model learning process. Based on the experiments, we have developed a convolution neural network based model for Korean sign language recognition. The accuracy of the developed model was about 84.5% for the 10 selected Korean sign words.
引用
收藏
页码:52 / 55
页数:4
相关论文
共 50 条
  • [21] Sign Language Recognition Using Modified Convolutional Neural Network Model
    Suharjito
    Gunawan, Herman
    Thiracitta, Narada
    Nugroho, Ariadi
    2018 INDONESIAN ASSOCIATION FOR PATTERN RECOGNITION INTERNATIONAL CONFERENCE (INAPR), 2018, : 1 - 5
  • [22] Multi-column Spatial Transformer Convolution Neural Network for Traffic Sign Recognition
    Zhang, Jin
    Duan, Shukai
    Wang, Lidan
    Zou, Xianli
    ADVANCES IN NEURAL NETWORKS - ISNN 2018, 2018, 10878 : 593 - 600
  • [23] Memory Efficient Sign Language Recognition System Based on WiSARD Weightless Neural Network technique
    Ghazanfar, Faisal
    Haider, Najmi Ghani
    2016 2ND INTERNATIONAL CONFERENCE ON ROBOTICS AND ARTIFICIAL INTELLIGENCE (ICRAI), 2016, : 17 - 22
  • [24] Character Recognition Based on Corner Detection and Convolution Neural Network
    Tan, Beihai
    Peng, Qiuming
    Yao, Xiaojiao
    Hu, Chao
    Xu, Zhenhao
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017, : 503 - 507
  • [25] Control Chart Pattern Recognition Based on Convolution Neural Network
    Miao, Zhihong
    Yang, Mingshun
    SMART INNOVATIONS IN COMMUNICATION AND COMPUTATIONAL SCIENCES, VOL 2, 2019, 670 : 97 - 104
  • [26] Multi-sensor data fusion for sign language recognition based on dynamic Bayesian networks and convolution neural networks
    Zhao, Y. D.
    Xiao, Q. K.
    Wang, H.
    AUTOMATIC CONTROL, MECHATRONICS AND INDUSTRIAL ENGINEERING, 2019, : 329 - 336
  • [27] Breast Cancer Recognition Algorithm Based on Convolution Neural Network
    Jiang, Jiafu
    Li, Xinpei
    Wang, Jin
    Lim, Se-Jung
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2021, 11 (03) : 672 - 680
  • [28] Deep Convolution Neural Network Based Speech Recognition for Chhattisgarhi
    Londhe, Narendra D.
    Kshirsagar, Ghanahshyam B.
    Tekchandani, Hitesh
    2018 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2018, : 667 - 671
  • [29] Sign Language Recognition Using Image Based Hand Gesture Recognition Techniques
    Nikam, Ashish S.
    Ambekar, Aarti G.
    PROCEEDINGS OF 2016 ONLINE INTERNATIONAL CONFERENCE ON GREEN ENGINEERING AND TECHNOLOGIES (IC-GET), 2016,
  • [30] Convolution neural network with low operation FLOPS and high accuracy for image recognition
    Shih-Chang Hsia
    Szu-Hong Wang
    Chuan-Yu Chang
    Journal of Real-Time Image Processing, 2021, 18 : 1309 - 1319