Korean Sign Language Recognition Based on Image and Convolution Neural Network

被引:11
|
作者
Shin, Hyojoo [1 ]
Kim, Woo Je [1 ]
Jang, Kyoung-ae [2 ]
机构
[1] Seoul Natl Univ Sci & Technol, Dept SW Anal & Design, 232 Gongreungro, Seoul, South Korea
[2] Seoul Natl Univ Sci & Technol, Dept Ind & Informat Syst Engn, 232 Gongreungro, Seoul, South Korea
来源
ICIGP 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS PROCESSING / 2019 5TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY | 2019年
关键词
Korean Sign Language; Convolution Neural Network; Image; Recognition;
D O I
10.1145/3313950.3313967
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The purpose of this paper is to develop a convolution neural network based model for Korean sign language recognition. For this purpose, sign language videos were collected for 10 selected words of Korean sign language and these videos were converted into images to have 9 frames. The images with 9 frames were used as input data for the convolution neural network based model developed in this study. In order to develop the model for Korean sign language recognition, experiments for determining the number of convolution layers was first performed. Second, experiments for the pooling which intentionally reduces the features of the feature map was performed. Third, we conducted an experiment to reduce over fitting in the model learning process. Based on the experiments, we have developed a convolution neural network based model for Korean sign language recognition. The accuracy of the developed model was about 84.5% for the 10 selected Korean sign words.
引用
收藏
页码:52 / 55
页数:4
相关论文
共 50 条
  • [1] Gesture based Arabic Sign Language Recognition for Impaired People based on Convolution Neural Network
    El Rwelli, Rady
    Shahin, Osama R.
    Taloba, Ahmed, I
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (12) : 574 - 582
  • [2] Traffic Sign Recognition Based on Improved Deep Convolution Neural Network
    Ma Yongjie
    Li Xueyan
    Song Xiaofeng
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (12)
  • [3] Research on fingerprint image recognition based on convolution neural network
    Tian, Lifang
    Xu, Huijuan
    Zheng, Xin
    INTERNATIONAL JOURNAL OF BIOMETRICS, 2021, 13 (01) : 64 - 79
  • [4] Research on Image Recognition Technology Based on Convolution Neural Network
    Wang Jinghe
    2019 4TH INTERNATIONAL WORKSHOP ON MATERIALS ENGINEERING AND COMPUTER SCIENCES (IWMECS 2019), 2019, : 147 - 151
  • [5] Optimized Hybrid Convolution Neural Network with Machine Learning for Arabic Sign Language Recognition
    Mahmoud, Ahmed Osman
    Ziedan, Aibrahim
    Zamel, Amr A.
    TRAITEMENT DU SIGNAL, 2024, 41 (04) : 1835 - 1846
  • [6] Banknote Image Defect Recognition Method Based on Convolution Neural Network
    Wang Ke
    Wang Huiqin
    Shu Yue
    Mao Li
    Qiu Fengyan
    INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS, 2016, 10 (06): : 269 - 279
  • [7] Image based Arabic Sign Language Recognition System
    Alzohairi, Reema
    Alghonaim, Raghad
    Alshehri, Waad
    Aloqeely, Shahad
    Alzaidan, Munera
    Bchir, Ouiem
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (03) : 185 - 194
  • [8] Recognition Bangla Sign Language using Convolutional Neural Network
    Islalm, Md Shafiqul
    Rahman, Md Moklesur
    Rahman, Md. Hafizur
    Arifuzzaman, Md
    Sassi, Roberto
    Aktaruzzaman, Md
    2019 INTERNATIONAL CONFERENCE ON INNOVATION AND INTELLIGENCE FOR INFORMATICS, COMPUTING, AND TECHNOLOGIES (3ICT), 2019,
  • [9] Indonesia Sign Language Recognition using Convolutional Neural Network
    Dwijayanti, Suci
    Hermawati
    Taqiyyah, Sahirah Inas
    Hikmarika, Hera
    Suprapto, Bhakti Yudho
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (10) : 415 - 422
  • [10] Bangla Sign Language Recognition using Convolutional Neural Network
    Yasir, Farhad
    Prasad, P. W. C.
    Alsadoon, Abeer
    Elchouemi, A.
    Sreedharan, Sasikumaran
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), 2017, : 49 - 53