Multiple and sign-changing solutions for a class of semilinear biharmonic equation

被引:61
作者
Wang, Youjun [1 ]
Shen, Yaotan [1 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Biharmonic equation; Sign-changing solution; Linking; CRITICAL EXPONENTS; ELLIPTIC PROBLEMS;
D O I
10.1016/j.jde.2009.02.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, under an improved Hardy-Rellich's inequality, we study the existence of multiple and sign-changing solutions for a biharmonic equation in unbounded domain by the minimax method and linking theorem. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:3109 / 3125
页数:17
相关论文
共 22 条
[11]  
Lions P.-L., 1985, Rev. Mat. Iberoamericana, V1, P45
[12]   CRITICAL SEMILINEAR BIHARMONIC-EQUATIONS IN R(N) [J].
NOUSSAIR, ES ;
SWANSON, CA ;
YANG, JF .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 121 :139-148
[13]  
RABINOWITZ H, 1986, CBMS REG C M, V65
[14]   Sign-changing critical points from linking type theorems [J].
Schechter, M. ;
Zou, W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (12) :5293-5318
[15]   Infinitely many solutions to perturbed elliptic equations [J].
Schechter, M ;
Zou, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 228 (01) :1-38
[16]   A concentration-compactness lemma with applications to singular eigenvalue problems [J].
Smets, D .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (02) :463-480
[17]  
Stavrakakis N. M., 1999, ADV DIFFERENTIAL EQU, V4, P115
[18]   UNIQUENESS FOR SEMILINEAR POLYHARMONIC PROBLEMS [J].
SWANSON, CA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 25 (9-10) :1055-1062
[19]   Nontrivial solution for a class of semilinear biharmonic equation involving critical exponents [J].
Yao, Yangxin ;
Wang, Rongxin ;
Shen, Yaotian .
ACTA MATHEMATICA SCIENTIA, 2007, 27 (03) :509-514
[20]  
YAO YX, 2004, ACTA MATH APPL SIN-E, V20, P433