Multiple and sign-changing solutions for a class of semilinear biharmonic equation

被引:61
作者
Wang, Youjun [1 ]
Shen, Yaotan [1 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Biharmonic equation; Sign-changing solution; Linking; CRITICAL EXPONENTS; ELLIPTIC PROBLEMS;
D O I
10.1016/j.jde.2009.02.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, under an improved Hardy-Rellich's inequality, we study the existence of multiple and sign-changing solutions for a biharmonic equation in unbounded domain by the minimax method and linking theorem. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:3109 / 3125
页数:17
相关论文
共 22 条
[1]   DECAYING SOLUTIONS OF 2MTH ORDER ELLIPTIC PROBLEMS [J].
ALLEGRETTO, W ;
YU, LS .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (03) :449-460
[2]   On a class of singular biharmonic problems involving critical exponents [J].
Alves, CO ;
do O, JM ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) :12-26
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]   Positivity preserving property for a class of biharmonic elliptic problems [J].
Berchio, Elvise ;
Gazzola, Filippo ;
Mitidieri, Enzo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (01) :1-23
[5]  
Bernis F., 1996, Advances in Differential Equations, V1, P219
[6]   On some fourth-order semilinear elliptic problems in RN [J].
Chabrowski, J ;
do O, JM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 49 (06) :861-884
[7]  
DENG Y, 1996, P ROY SOC EDINB A, V129, P925
[8]   CRITICAL EXPONENTS, CRITICAL DIMENSIONS AND THE BIHARMONIC OPERATOR [J].
EDMUNDS, DE ;
FORTUNATO, D ;
JANNELLI, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 112 (03) :269-289
[9]   EXISTENCE OF POSITIVE ENTIRE SOLUTIONS FOR HIGHER-ORDER QUASI-LINEAR ELLIPTIC-EQUATIONS [J].
FURUSHO, Y ;
KUSANO, T .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1994, 46 (03) :449-465
[10]  
KUSANO T, 1988, CAN J MATH, V195, P1281