Armendariz and reduced rings

被引:82
作者
Lee, TK
Zhou, YQ [1 ]
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[2] Natl Taiwan Univ, Dept Math, Taipei, Taiwan
基金
加拿大自然科学与工程研究理事会;
关键词
Armendariz ring; matrix ring; reduced ring; trivial extension;
D O I
10.1081/AGB-120037221
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring R is called Armendariz if, whenever (Sigma(i=0)(s) a(i)x(i))(Sigma(j=0)(t)b(j)x(j)) = 0 in R[x], a(i)b(j) = 0 for all i and j. In this paper, some "relatively maximal" Armendariz subrings of matrix rings are identified, and a necessary and sufficient condition for a trivial extension to be Armendariz is obtained. Consequently, new families of Armendariz rings are presented.
引用
收藏
页码:2287 / 2299
页数:13
相关论文
共 11 条
[1]   Armendariz rings and Gaussian rings [J].
Anderson, DD ;
Camillo, V .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (07) :2265-2272
[2]  
Armendariz E.P., 1974, J AUSTR MATH SOC, V18, P470
[3]   On annihilator ideals of a polynomial ring over a noncommutative ring [J].
Hirano, Y .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 168 (01) :45-52
[4]   Ore extensions of Baer and p.p.-rings [J].
Hong, CY ;
Kim, NK ;
Kwak, TK .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 151 (03) :215-226
[5]   Armendariz rings and semicommutative rings [J].
Huh, C ;
Lee, Y ;
Smoktunowicz, A .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (02) :751-761
[6]  
Kaplansky I., 1965, RINGS OPERATORS
[7]   THE POLYNOMIAL RING OVER A GOLDIE RING NEED NOT BE A GOLDIE RING [J].
KERR, JW .
JOURNAL OF ALGEBRA, 1990, 134 (02) :344-352
[8]   Armendariz rings and reduced rings [J].
Kim, NK ;
Lee, Y .
JOURNAL OF ALGEBRA, 2000, 223 (02) :477-488
[9]  
Krempa J., 1996, ALGEBRA C, V3, P289
[10]  
Lee TK, 2003, HOUSTON J MATH, V29, P583