Tunable and Efficient Tin Modified Nitrogen-Doped Carbon Nanofibers for Electrochemical Reduction of Aqueous Carbon Dioxide

被引:238
作者
Zhao, Yong [1 ]
Liang, Jiaojiao [2 ]
Wang, Caiyun [1 ]
Ma, Jianmin [2 ]
Wallace, Gordon G. [1 ]
机构
[1] Univ Wollongong, AIIM, Intelligent Polymer Res Inst, ARC Ctr Excellence Electromat Sci, Innovat Campus, North Wollongong, NSW 2522, Australia
[2] Hunan Univ, Sch Phys & Elect, Minist Educ, Key Lab Micro Nanooptoelect Devices, Changsha 410082, Hunan, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
atomically dispersed tin; carbon dioxide reduction; electrocatalysis; nitrogen-doped carbon nanofibers; tin nanoparticles; GAS-DIFFUSION ELECTRODE; CO2; REDUCTION; FORMATE; ELECTROREDUCTION; PERFORMANCE; CONVERSION; CATALYSTS; DENSITY; SELECTIVITY; NANOWIRES;
D O I
10.1002/aenm.201702524
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Efficient and selective earth-abundant catalysts are highly desirable to drive the electrochemical conversion of CO2 into value-added chemicals. In this work, a low-cost Sn modified N-doped carbon nanofiber hybrid catalyst is developed for switchable CO2 electroreduction in aqueous medium via a straightforward electrospinning technique coupled with a pyrolysis process. The electrocatalytic performance can be tuned by the structure of Sn species on the N-doped carbon nanofibers. Sn nanoparticles drive efficient formate formation with a high current density of 11 mA cm(-2) and a faradaic efficiency of 62% at a moderate overpotential of 690 mV. Atomically dispersed Sn species promote conversion of CO2 to CO with a high faradaic efficiency of 91% at a low overpotential of 490 mV. The interaction between Sn species and pyridinic-N may play an important role in tuning the catalytic activity and selectivity of these two materials.
引用
收藏
页数:9
相关论文
共 52 条
[1]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99
[2]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[3]   Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts [J].
Chen, Yihong ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1986-1989
[4]   Identification of electron donor states in N-doped carbon nanotubes [J].
Czerw, R ;
Terrones, M ;
Charlier, JC ;
Blase, X ;
Foley, B ;
Kamalakaran, R ;
Grobert, N ;
Terrones, H ;
Tekleab, D ;
Ajayan, PM ;
Blau, W ;
Rühle, M ;
Carroll, DL .
NANO LETTERS, 2001, 1 (09) :457-460
[5]   Metal-Free Carbon Materials for CO2 Electrochemical Reduction [J].
Duan, Xiaochuan ;
Xu, Jiantie ;
Wei, Zengxi ;
Ma, Jianmin ;
Guo, Shaojun ;
Wang, Shuangyin ;
Liu, Huakun ;
Dou, Shixue .
ADVANCED MATERIALS, 2017, 29 (41)
[6]   Grain-Boundary-Dependent CO2 Electroreduction Activity [J].
Feng, Xiaofeng ;
Jiang, Kaili ;
Fan, Shoushan ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (14) :4606-4609
[7]   Size-Dependent Electrocatalytic Reduction of CO2 over Pd Nanoparticles [J].
Gao, Dunfeng ;
Zhou, Hu ;
Wang, Jing ;
Miao, Shu ;
Yang, Fan ;
Wang, Guoxiong ;
Wang, Jianguo ;
Bao, Xinhe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (13) :4288-4291
[8]  
Hori Y, 2008, MOD ASP ELECTROCHEM, P89
[9]   Electrochemical Reduction of CO2 Catalyzed by Fe-N-C Materials: A Structure-Selectivity Study [J].
Huan, Tran Ngoc ;
Ranjbar, Nastaran ;
Rousse, Gwenaelle ;
Sougrati, Moulay ;
Zitolo, Andrea ;
Mougel, Victor ;
Jaouen, Frederic ;
Fontecave, Marc .
ACS CATALYSIS, 2017, 7 (03) :1520-1525
[10]   A Nitrogen-Doped Carbon Catalyst for Electrochemical CO2 Conversion to CO with High Selectivity and Current Density [J].
Jhong, Huei-Ru Molly ;
Tornow, Claire E. ;
Smid, Bretislav ;
Gewirth, Andrew A. ;
Lyth, Stephen M. ;
Kenis, Paul J. A. .
CHEMSUSCHEM, 2017, 10 (06) :1094-1099