Entire Solutions in Lattice Delayed Differential Equations with Non local Interaction: Bistable Cases

被引:23
作者
Wang, Z. -C. [1 ,2 ]
Li, W. -T. [1 ]
Ruan, S. [3 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
[3] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
entire solution; traveling wave front; lattice delayed differential equation; bistable nonlinearity; TRAVELING-WAVE-FRONTS; REACTION-DIFFUSION EQUATIONS; STRUCTURED POPULATION; ASYMPTOTIC SPEED; UNIQUENESS; EXISTENCE; PROPAGATION; STABILITY; DYNAMICS; MODEL;
D O I
10.1051/mmnp/20138307
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper is concerned with entire solutions of a class of bistable delayed lattice differential equations with nonlocal interaction. Here an entire solution is meant by a solution defined for all (n, t) is an element of Z x R. Assuming that the equation has an increasing traveling wave front with nonzero wave speed and using a comparison argument, we obtain a two-dimensional manifold of entire solutions. In particular, it is shown that the traveling wave fronts are on the boundary of the manifold. Furthermore, uniqueness and stability of such entire solutions are studied.
引用
收藏
页码:78 / 103
页数:26
相关论文
共 51 条
[1]   A discrete convolution model for phase transitions [J].
Bates, PW ;
Chmaj, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 150 (04) :281-305
[2]  
BELL J, 1984, Q APPL MATH, V42, P1
[3]   MULTIDIMENSIONAL TRAVELING-WAVE SOLUTIONS OF A FLAME PROPAGATION MODEL [J].
BERESTYCKI, H ;
LARROUTUROU, B ;
LIONS, PL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (01) :33-49
[4]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[5]  
Berestycki H., 2008, REACTION DIFFUSION E
[6]  
Berestycki H, 2007, CONTEMP MATH, V446, P101
[7]   SPATIAL STRUCTURES AND PERIODIC TRAVELING WAVES IN AN INTEGRODIFFERENTIAL REACTION-DIFFUSION POPULATION-MODEL [J].
BRITTON, NF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (06) :1663-1688
[8]   SPATIALLY DISCRETE NONLINEAR DIFFUSION-EQUATIONS [J].
CAHN, JW ;
CHOW, SN ;
VANVLECK, ES .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (01) :87-118
[9]  
Cahn JW, 1998, SIAM J APPL MATH, V59, P455, DOI 10.1137/S0036139996312703
[10]   Uniqueness of travelling waves for nonlocal monostable equations [J].
Carr, J ;
Chmaj, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (08) :2433-2439