Product Sets of Rationals, Multiplicative Translates of Subgroups in Residue Rings, and Fixed Points of the Discrete Logarithm

被引:33
作者
Bourgain, Jean [2 ]
Konyagin, Sergei V. [3 ]
Shparlinski, Igor E. [1 ]
机构
[1] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
[2] Inst Adv Study, Princeton, NJ 08540 USA
[3] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119992, Russia
基金
澳大利亚研究理事会;
关键词
D O I
10.1093/imrn/rnn090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a lower bound on the size of the product set of two arbitrary subsets of the set of Farey fractions of a given order and apply it to study the distribution of elements of multiplicative groups in residue rings. For example, we prove a conjecture of J. Holden and P. Moree on the behavior of the number of solutions to the congruence g(h) = h(mod p), 1 <= g, h <= p-1, on average over primes p. This congruence appears in studying fixed points of the discrete logarithm.
引用
收藏
页数:29
相关论文
共 18 条
[1]  
[Anonymous], REV ROUMAINE MATH PU
[2]  
Baker RC, 1998, ACTA ARITH, V83, P331
[3]   Estimates for the number of sums and products and for exponential sums in fields of prime order [J].
Bourgain, J. ;
Glibichuk, A. A. ;
Konyagin, S. V. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 :380-398
[4]  
BOURGAIN J, DIVISIBILIT IN PRESS
[5]  
BOURGAIN J, GEOMETRIC F IN PRESS
[6]  
CAMPBELL M, EXPLICIT ES IN PRESS
[7]  
Drmota M., 1997, SEQUENCES DISCREPANC
[8]  
Guy R. K., 1994, UNSOLVED PROBLEMS NU
[9]  
Hardy G. H., 1979, INTRO THEORY NUMBERS
[10]   New bounds for Gauss sums derived from kth powers, and for Heilbronn's exponential sum [J].
Heath-Brown, DR ;
Konyagin, S .
QUARTERLY JOURNAL OF MATHEMATICS, 2000, 51 :221-235