The arithmetic of the values of modular functions and the divisors of modular forms

被引:52
作者
Bruinier, JH
Kohnen, W
Ono, K
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Heidelberg, Inst Math, D-69120 Heidelberg, Germany
关键词
Borcherds products; singular moduli; modular forms and functions;
D O I
10.1112/S0010437X03000721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the arithmetic and combinatorial significance of the values of the polynomials j(n)(x) defined by the q-expansion [GRAPHICS] They allow us to provide an explicit description of the action of the Ramanujan Theta-operator on modular forms. There are a substantial number of consequences for this result. We obtain recursive formulas for coefficients of modular forms, formulas for the infinite product exponents of modular forms, and new p-adic class number formulas.
引用
收藏
页码:552 / 566
页数:15
相关论文
共 12 条
[1]  
[Anonymous], P INT C MATH ZUR 199
[2]  
Asai T., 1997, Commentarii Mathematici Universitatis Sancti Pauli, V46, P93
[3]   AUTOMORPHIC-FORMS ON O-S+2,O-2(R) AND INFINITE PRODUCTS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1995, 120 (01) :161-213
[4]  
BORCHERDS RE, 1995, P INT C MATH ZUR 199, V2, P744
[5]   The arithmetic of Borcherds' exponents [J].
Bruinier, JH ;
Ono, K .
MATHEMATISCHE ANNALEN, 2003, 327 (02) :293-303
[6]   Product expansions of conformal characters [J].
Eholzer, W ;
Skoruppa, NP .
PHYSICS LETTERS B, 1996, 388 (01) :82-89
[7]  
GROSS BH, 1985, J REINE ANGEW MATH, V355, P191
[8]  
Ireland K., 1990, A Classical Introduction to Modern Number Theory
[9]  
Ramanujan S., 1916, Trans. Camb. Phil. Soc, V22, P159
[10]  
Serre J.-P., 1976, ENS MATH, V22, P227