In situ synthesis of graphene supported Co-Sn-B alloy as an efficient catalyst for hydrogen generation from sodium borohydride hydrolysis

被引:49
作者
Cui, Zhenkai [1 ]
Guo, Yueping [1 ]
Ma, Jiantai [1 ]
机构
[1] Lanzhou Univ, Coll Chem & Chem Engn, State Key Lab Appl Organ Chem, Key Lab Special Funct Mat & Struct Design,Minist, Lanzhou 730000, Peoples R China
关键词
Co-Sn-B; Graphene; In-situ; Sodium borohydride; Hydrogen generation; NI-B; NANOPARTICLES; BEHAVIOR;
D O I
10.1016/j.ijhydene.2015.11.081
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, graphene (GP) supported Co-Sn-B alloy were synthesized via in situ chemical reduction reactions for hydrogen generation (HG) from alkaline sodium borohydride (NaBH4). X-ray diffraction (XRD), high resolution transmission electron Microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) were employed to verify the structure, morphology and the surface element composition of the alloy. Coupled plasma atomic emission spectrometry (ICP-AES) were used to analyze the surface composition of the alloy. The effects of complexing agent addition, Co/Sn molar ratio, graphene loading on catalytic activity of the alloy were studied. The maximum hydrogen generation rate reached 11,272 mL min(-1) g(Co)(-1) at 30 degrees C in 5 wt. % NaOH and 5 wt. % NaBH4 solution, which was three times higher than unsupported Co-B catalysts. The activation energy of the catalytic hydrolysis reaction of sodium borohydride was 39.57 kJ/mol, which is comparable to the noble metal catalysts. Copyright (c) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1592 / 1599
页数:8
相关论文
共 40 条
[1]   Ruthenium(0) nanoparticles supported on nanotitania as highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane [J].
Akbayrak, Serdar ;
Tanyildizi, Seda ;
Morkan, Izzet ;
Ozkar, Saim .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (18) :9628-9637
[2]   A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst [J].
Amendola, SC ;
Sharp-Goldman, SL ;
Janjua, MS ;
Spencer, NC ;
Kelly, MT ;
Petillo, PJ ;
Binder, M .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (10) :969-975
[3]   Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution [J].
Bai, Ying ;
Wu, Chuan ;
Wu, Feng ;
Yi, Baolian .
MATERIALS LETTERS, 2006, 60 (17-18) :2236-2239
[4]   Highly active nanoporous Co-B-TiO2 framework for hydrolysis of NaBH4 [J].
Cheng, Jun ;
Xiang, Cuili ;
Zou, Yongjin ;
Chu, Hailiang ;
Qiu, Shujun ;
Zhang, Huanzhi ;
Sun, Lixian ;
Xu, Fen .
CERAMICS INTERNATIONAL, 2015, 41 (01) :899-905
[5]   Hydrogen generation from catalytic hydrolysis of sodium borohydride using bimetallic Ni-Co nanoparticles on reduced graphene oxide as catalysts [J].
Chou, Chang-Chen ;
Hsieh, Ching-Hsuan ;
Chen, Bing-Hung .
ENERGY, 2015, 90 :1973-1982
[6]   Promoted sulphated-zirconia catalysed hydrolysis of sodium tetrahydroborate [J].
Demirci, U. B. ;
Garin, F. .
CATALYSIS COMMUNICATIONS, 2008, 9 (06) :1167-1172
[7]   Pt catalysed hydrogen generation by hydrolysis of sodium tetrahydroborate [J].
Demirci, U. B. ;
Garin, F. .
INTERNATIONAL JOURNAL OF GREEN ENERGY, 2008, 5 (03) :148-156
[8]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[9]   Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using Cobalt-Copper-Boride (Co-Cu-B) catalysts [J].
Ding, Xin-Long ;
Yuan, Xianxia ;
Jia, Chao ;
Ma, Zi-Feng .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (20) :11077-11084
[10]   Chemical and Physical Solutions for Hydrogen Storage [J].
Eberle, Ulrich ;
Felderhoff, Michael ;
Schueth, Ferdi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (36) :6608-6630