New singular soliton solutions to the longitudinal wave equation in a magneto-electro-elastic circular rod with M-derivative

被引:53
作者
Baskonus, H. M. [1 ]
Gomez-Aguilar, J. F. [2 ]
机构
[1] Munzur Univ, Dept Comp Engn, Tunceli, Turkey
[2] Tecnol Nacl Mexico CENIDET, CONACyT, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
来源
MODERN PHYSICS LETTERS B | 2019年 / 33卷 / 21期
关键词
Longitudinal wave equation; M-derivative; IBSEF method; complex singular soliton solutions; contour surfaces; DIFFERENTIAL-EQUATIONS; CAPUTO;
D O I
10.1142/S0217984919502518
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, using the Bernoulli sub-equation function method, we obtain new dark, complex and singular soliton solutions for the longitudinal wave equation in a magneto-electro-elastic circular rod with M-derivative. Many new complex singular soliton solutions are successfully extracted. For better understanding of physical meanings, we plotted 2D and 3D graphs along with contour simulations.
引用
收藏
页数:16
相关论文
共 30 条
[1]   WHAT IS THE BEST FRACTIONAL DERIVATIVE TO FIT DATA? [J].
Almeida, Ricardo .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2017, 11 (02) :358-368
[2]  
[Anonymous], 2014, Abstr. Appl. Anal.
[3]  
ARNOLD RR, 2014, MITTAG LEFFLER FUNCT, V2, DOI DOI 10.3389/FPED.2014.00125
[4]  
Atangana A, 2018, MATH MODEL NAT PHENO, V13, P1, DOI DOI 10.1051/MMNP/20180102-S2.0-85045204146
[5]  
Baskonus H.M., 2015, Math. Lett, V1, P1
[6]   Novel Behaviors to the Nonlinear Evolution Equation Describing the Dynamics of Ionic Currents along Microtubules [J].
Baskonus, Haci Mehmet ;
Erdogan, Fevzi ;
Ozkul, Arif ;
Asmouh, Itham .
2ND INTERNATIONAL CONFERENCE ON COMPUTATIONAL MATHEMATICS AND ENGINEERING SCIENCES (CMES2017), 2017, 13
[7]   Regarding on the Prototype Solutions for the Nonlinear Fractional-Order Biological Population Model [J].
Baskonus, Haci Mehmet ;
Bulut, Hasan .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
[8]   On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method [J].
Baskonus, Haci Mehmet ;
Bulut, Hasan .
OPEN MATHEMATICS, 2015, 13 :547-556
[9]   Active Control of a Chaotic Fractional Order Economic System [J].
Baskonus, Haci Mehmet ;
Mekkaoui, Toufik ;
Hammouch, Zakia ;
Bulut, Hasan .
ENTROPY, 2015, 17 (08) :5771-5783
[10]  
Baskonus HM., 2016, Nonlinear Sci. Lett. A, V7, P67