Endoscopic prediction of submucosal invasion in Barrett's cancer with the use of artificial intelligence: a pilot study

被引:39
作者
Ebigbo, Alanna [1 ]
Mendel, Robert [2 ,3 ]
Rueckert, Tobias [2 ]
Schuster, Laurin [2 ]
Probst, Andreas [1 ]
Manzeneder, Johannes [1 ]
Prinz, Friederike [1 ]
Mende, Matthias [4 ]
Steinbrueck, Ingo [5 ]
Faiss, Siegbert [4 ]
Rauber, David [2 ,6 ,7 ]
de Souza, Luis A. [2 ,8 ]
Papa, Joao P. [8 ]
Deprez, Pierre H. [9 ]
Oyama, Tsuneo [10 ]
Takahashi, Akiko [10 ]
Seewald, Stefan [11 ]
Sharma, Prateek [12 ,13 ]
Byrne, Michael F. [14 ]
Palm, Christoph [2 ,3 ,6 ,7 ]
Messmann, Helmut [1 ]
机构
[1] Univ Klinikum Augsburg, Med Klin 3, Stenglinstr 2, D-86156 Augsburg, Germany
[2] Ostbayer TH Regensburg OTH Regensburg, Regensburg Med Image Comp ReMIC, Regensburg, Germany
[3] OTH Regensburg, Regensburg Ctr Hlth Sci & Technol RCHST, Regensburg, Germany
[4] Sana Klinikum Lichtenberg, Gastroenterol, Berlin, Germany
[5] Asklepios Klin Barmbek, Dept Gastroenterol Hepatol & Intervent Endoscopy, Hamburg, Germany
[6] OTH Regensburg, Regensburg Ctr Biomed Engn RCBE, Regensburg, Germany
[7] Regensburg Univ, Regensburg, Germany
[8] Sao Paulo State Univ, Dept Comp, Sao Paulo, Brazil
[9] Catholic Univ Louvain, Clin Univ St Luc, Brussels, Belgium
[10] Saku Cent Hosp Adv Care Ctr, Nagano, Japan
[11] Klin Hirslanden, GastroZentrum, Zurich, Switzerland
[12] Vet Affairs Med Ctr, Dept Gastroenterol & Hepatol, Kansas City, MO USA
[13] Univ Kansas, Sch Med, Kansas City, MO USA
[14] Univ British Columbia, Vancouver Gen Hosp, Div Gastroenterol, Vancouver, BC, Canada
关键词
EUROPEAN-SOCIETY; ESOPHAGUS; ADENOCARCINOMA; NEOPLASIA; ACCURACY; EUS;
D O I
10.1055/a-1311-8570
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background The accurate differentiation between T1a and T1b Barrett's-related cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an artificial intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett's cancer on white-light images. Methods Endoscopic images from three tertiary care centers in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) were evaluated using the AI system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett's cancer. Results The sensitivity, specificity, F1 score, and accuracy of the AI system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.74, and 0.71, respectively. There was no statistically significant difference between the performance of the AI system and that of experts, who showed sensitivity, specificity, F1, and accuracy of 0.63, 0.78, 0.67, and 0.70, respectively. Conclusion This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett's cancer. AI scored equally to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and real-life settings. Nevertheless, the correct prediction of submucosal invasion in Barrett's cancer remains challenging for both experts and AI.
引用
收藏
页码:878 / 883
页数:6
相关论文
共 21 条
[1]  
[Anonymous], 2010, ACM SIGKDD Explorations Newsletter
[2]   The Epidemiology of Esophageal Adenocarcinoma [J].
Coleman, Helen G. ;
Xie, Shao-Hua ;
Lagergren, Jesper .
GASTROENTEROLOGY, 2018, 154 (02) :390-405
[3]   Deep learning algorithm detection of Barrett's neoplasia with high accuracy during live endoscopic procedures: a pilot study [J].
de Groof, Albert J. ;
Struyvenberg, Maarten R. ;
Fockens, Kiki N. ;
van der Putten, Joost ;
van der Sommen, Fons ;
Boers, Tim G. ;
Zinger, Sveta ;
Bisschops, Raf ;
de With, Peter H. ;
Pouw, Roos E. ;
Curvers, Wouter L. ;
Schoon, Erik J. ;
Bergman, Jacques J. G. H. M. .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (06) :1242-1250
[4]   Deep-Learning System Detects Neoplasia in Patients With Barrett's Esophagus With Higher Accuracy Than Endoscopists in a Multistep Training and Validation Study With Benchmarking [J].
de Groof, Albert J. ;
Struyvenberg, Maarten R. ;
van der Putten, Joost ;
van der Sommen, Fons ;
Fockens, Kiki N. ;
Curvers, Wouter L. ;
Zinger, Sveta ;
Pouw, Roos E. ;
Coron, Emmanuel ;
Baldaque-Silva, Francisco ;
Pech, Oliver ;
Weusten, Bas ;
Meining, Alexander ;
Neuhaus, Horst ;
Bisschops, Raf ;
Dent, John ;
Schoon, Erik J. ;
de With, Peter H. ;
Bergman, Jacques J. .
GASTROENTEROLOGY, 2020, 158 (04) :915-+
[5]   Metabolic Syndrome Increases Risk of Barrett Esophagus in the Absence of Gastroesophageal Reflux An Analysis of SEER-Medicare Data [J].
Drahos, Jennifer ;
Ricker, Winnie ;
Parsons, Ruth ;
Pfeiffer, Ruth M. ;
Warren, Joan L. ;
Cook, Michael B. .
JOURNAL OF CLINICAL GASTROENTEROLOGY, 2015, 49 (04) :282-288
[6]   Real-time use of artificial intelligence in the evaluation of cancer in Barrett's oesophagus [J].
Ebigbo, Alanna ;
Mendel, Robert ;
Probst, Andreas ;
Manzeneder, Johannes ;
Prinz, Friederike ;
de Souza, Luis A., Jr. ;
Papa, Joao ;
Palm, Christoph ;
Messmann, Helmut .
GUT, 2020, 69 (04) :615-616
[7]   Computer-aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma [J].
Ebigbo, Alanna ;
Mendel, Robert ;
Probst, Andreas ;
Manzeneder, Johannes ;
de Souza, Luis Antonio, Jr. ;
Papa, Joao P. ;
Palm, Christoph ;
Messmann, Helmut .
GUT, 2019, 68 (07) :1143-U222
[8]   Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett's esophagus (with video) [J].
Hashimoto, Rintaro ;
Requa, James ;
Dao, Tyler ;
Ninh, Andrew ;
Tran, Elise ;
Mai, Daniel ;
Lugo, Michael ;
Chehade, Nabil El-Hage ;
Chang, Kenneth J. ;
Karnes, Williams E. ;
Samarasena, Jason B. .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (06) :1264-+
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks [J].
Horie, Yoshimasa ;
Yoshio, Toshiyuki ;
Aoyama, Kazuharu ;
Yoshimizu, Shoichi ;
Horiuchi, Yusuke ;
Ishiyama, Akiyoshi ;
Hirasawa, Toshiaki ;
Tsuchida, Tomohiro ;
Ozawa, Tsuyoshi ;
Ishihara, Soichiro ;
Kumagai, Youichi ;
Fujishiro, Mitsuhiro ;
Maetani, Iruru ;
Fujisaki, Junko ;
Tada, Tomohiro .
GASTROINTESTINAL ENDOSCOPY, 2019, 89 (01) :25-32