Compactifications of discrete quantum groups

被引:3
作者
Soltan, Piotr Mikolaj [1 ]
机构
[1] Warsaw Univ, Fac Phys, Dept Math Methods Phys, Warsaw, Poland
关键词
discrete quantum group; multiplier Hopf algebra; Bohr compactification;
D O I
10.1007/s10468-006-9035-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a discrete quantum group (A, delta) we construct a Hopf *-algebra AP which is a unital *-subalgebra of the multiplier algebra of A. The structure maps for AP are inherited from M( A) and thus the construction yields a compactification of (A, delta i) which is analogous to the Bohr compactification of a locally compact group. This algebra has the expected universal property with respect to homomorphisms from multiplier Hopf algebras of compact type (and is therefore unique). This provides an easy proof of the fact that for a discrete quantum group with an infinite dimensional algebra the multiplier algebra is never a Hopf algebra.
引用
收藏
页码:581 / 591
页数:11
相关论文
共 10 条
[1]   Locally compact quantum groups [J].
Kustermans, J ;
Vaes, S .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (06) :837-934
[2]  
Loomis L., 1953, An Introduction to Abstract Harmonic Analysis
[3]   A C*-algebraic framework for quantum groups [J].
Masuda, T ;
Nakagami, Y ;
Woronowicz, SL .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (09) :903-1001
[4]   QUANTUM DEFORMATION OF LORENTZ GROUP [J].
PODLES, P ;
WORONOWICZ, SL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (02) :381-431
[5]   Multiplier Hopf algebras of discrete type [J].
Van Daele, A ;
Zhang, YH .
JOURNAL OF ALGEBRA, 1999, 214 (02) :400-417
[6]   An algebraic framework for group duality [J].
Van Daele, A .
ADVANCES IN MATHEMATICS, 1998, 140 (02) :323-366
[7]   DUAL PAIRS OF HOPF ASTERISK-ALGEBRAS [J].
VANDAELE, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1993, 25 :209-230
[8]  
VANDAELE A, 1994, T AM MATH SOC, V342, P917
[9]   Discrete quantum groups [J].
VanDaele, A .
JOURNAL OF ALGEBRA, 1996, 180 (02) :431-444
[10]  
Wei A., 1965, INTEGRATION GROUPES