Anisotropic elastic behaviour using the four-dimensional formalism of differential geometry

被引:3
|
作者
Wang, M. [1 ]
Rouhaud, E. [1 ]
Roos, A. [1 ]
Panicaud, B. [1 ]
Kerner, R. [2 ]
Ameline, O. [1 ]
机构
[1] Univ Technol Troyes, Inst Charles Delaunay, CNRS UMR 6279, Syst Mecan & Ingn Simultanee LASMIS, F-10010 Troyes, France
[2] UPMC, LPTMC, F-75005 Paris, France
关键词
Constitutive models; Covariance principle; Material objectivity; Frame-indifference; Continuum mechanics; Anisotropic elastic behaviour; CONTINUUM; OBJECTIVITY; PRINCIPLE; INDIFFERENCE; ENERGY; MODELS;
D O I
10.1016/j.commatsci.2014.03.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper discusses covariance and material objectivity in continuum mechanics. The aim is to extend the mathematical framework of constitutive relations to the four-dimensional (4D) formalism of the General Relativity theory. First, it is demonstrated that 4D general linear or non-linear, isotropic or anisotropic relations can be obtained, no matter the reference frame, such as inertial, animated with a rigid body motion and convective or generally curvilinear, and no matter the starting point, for instance a variation of a thermodynamic potential or a direct coupling between stress-like and strain-like tensors, etc. Second, it is then always possible to model anisotropic behaviour, which is not always possible in some of the 3D classical approaches. In order to demonstrate this 4D approach, different elastic relations for different observers have been investigated analytically and numerically. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 141
页数:10
相关论文
共 50 条
  • [1] Consistent hypo-elastic behavior using the four-dimensional formalism of differential geometry
    Panicaud, B.
    Rouhaud, E.
    Altmeyer, G.
    Wang, M.
    Kerner, R.
    Roos, A.
    Ameline, O.
    ACTA MECHANICA, 2016, 227 (03) : 651 - 675
  • [2] Consistent hypo-elastic behavior using the four-dimensional formalism of differential geometry
    B. Panicaud
    E. Rouhaud
    G. Altmeyer
    M. Wang
    R. Kerner
    A. Roos
    O. Ameline
    Acta Mechanica, 2016, 227 : 651 - 675
  • [3] Canonical frame-indifferent transport operators with the four-dimensional formalism of differential geometry
    Rouhaud, E.
    Panicaud, B.
    Kerner, R.
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 77 : 120 - 130
  • [4] On the four-dimensional formalism in continuum mechanics
    R. Kienzler
    G. Herrmann
    Acta Mechanica, 2003, 161 : 103 - 125
  • [5] On the four-dimensional formalism in continuum mechanics
    Kienzler, R
    Herrmann, G
    ACTA MECHANICA, 2003, 161 (1-2) : 103 - 125
  • [6] FOUR-DIMENSIONAL ELASTIC MEDIUM
    PARIA, G
    ACTA MECHANICA, 1974, 19 (1-2) : 139 - 146
  • [7] Four-Dimensional Anisotropic Mesh Adaptation
    Caplan, Philip Claude
    Haimes, Robert
    Darmofal, David L.
    Galbraith, Marshall C.
    COMPUTER-AIDED DESIGN, 2020, 129
  • [8] Geometry of four-dimensional Killing spinors
    Cacciatori, Sergio L.
    Caldarelli, Marco M.
    Klemm, Dietmar
    Mansi, Diego S.
    Roest, Diederik
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (07):
  • [9] Covariant canonical formalism for four-dimensional BF theory
    Mondragón, M
    Montesinos, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (02)
  • [10] The geometry of a net of quadrics in four-dimensional space
    Edge, WL
    ACTA MATHEMATICA, 1935, 64 (01) : 185 - 242