Numerical Inverse Scattering for the Toda Lattice

被引:11
|
作者
Bilman, Deniz [1 ]
Trogdon, Thomas [2 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
[2] Univ Calif Irvine, Rowland Hall, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
RIEMANN-HILBERT PROBLEMS; LONG-TIME ASYMPTOTICS; STEEPEST DESCENT; BEHAVIOR;
D O I
10.1007/s00220-016-2819-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a method to compute the inverse scattering transform (IST) for the famed Toda lattice by solving the associated Riemann-Hilbert (RH) problem numerically. Deformations for the RH problem are incorporated so that the IST can be evaluated in operations for arbitrary points in the (n, t)-domain, including short- and long-time regimes. No time-stepping is required to compute the solution because (n, t) appear as parameters in the associated RH problem. The solution of the Toda lattice is computed in long-time asymptotic regions where the asymptotics are not known rigorously.
引用
收藏
页码:805 / 879
页数:75
相关论文
共 50 条
  • [41] A simple and efficient numerical procedure to compute the inverse Langevin function with high accuracy
    Maria Benitez, Jose
    Javier Montans, Francisco
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2018, 261 : 153 - 163
  • [43] Inverse scattering transform for the nonlocal Gerdjikov-Ivanov equation with simple and double poles
    Wang, Guixian
    Wang, Xiu-Bin
    Han, Bo
    NONLINEAR DYNAMICS, 2024, 112 (08) : 6517 - 6533
  • [44] Inverse scattering and soliton solutions of high-order matrix nonlinear Schrodinger equation
    Chen, Yong
    Yan, Xue-Wei
    NONLINEAR DYNAMICS, 2022, 108 (04) : 4057 - 4067
  • [45] l 2-Sobolev space bijectivity of the scattering-inverse scattering transforms related to defocusing Ablowitz-Ladik systems
    Chen, Meisen
    Fan, Engui
    He, Jingsong
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 443
  • [46] A numerical framework to predict the fatigue life of lattice structures built by additive manufacturing
    Burr, Alexis
    Persenot, Theo
    Doutre, Pierre-Thomas
    Buffiere, Jean-Yves
    Lhuissier, Pierre
    Martin, Guilhem
    Dendievel, Remy
    INTERNATIONAL JOURNAL OF FATIGUE, 2020, 139 (139)
  • [47] Homogenization modeling and numerical simulation of piezolaminated lattice sandwich structures with viscoelastic material
    Xing, Yu-Xuan
    Gao, Ying-Shan
    Liu, Tao
    Dou, Wei-Yuan
    Zhang, Shun-Qi
    MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [48] Numerical investigation of the mechanical properties of lattice structures inspired from polycrystalline materials
    Liu, Yabo
    Bai, Guangwei
    Qu, Zhipeng
    Xu, Xiaochang
    AIP ADVANCES, 2024, 14 (03)
  • [49] Numerical comparison of lattice unit cell designs for medical implants by additive manufacturing
    du Plessis, A.
    Yadroitsava, I.
    Yadroitsev, I.
    le Rouxa, S. G.
    Blaine, D. C.
    VIRTUAL AND PHYSICAL PROTOTYPING, 2018, 13 (04) : 266 - 281
  • [50] Cubic negative stiffness lattice structure for energy absorption: Numerical and experimental studies
    Ha, Chan Soo
    Lakes, Roderic S.
    Plesha, Michael E.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2019, 178 : 127 - 135