Numerical Inverse Scattering for the Toda Lattice

被引:11
|
作者
Bilman, Deniz [1 ]
Trogdon, Thomas [2 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
[2] Univ Calif Irvine, Rowland Hall, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
RIEMANN-HILBERT PROBLEMS; LONG-TIME ASYMPTOTICS; STEEPEST DESCENT; BEHAVIOR;
D O I
10.1007/s00220-016-2819-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a method to compute the inverse scattering transform (IST) for the famed Toda lattice by solving the associated Riemann-Hilbert (RH) problem numerically. Deformations for the RH problem are incorporated so that the IST can be evaluated in operations for arbitrary points in the (n, t)-domain, including short- and long-time regimes. No time-stepping is required to compute the solution because (n, t) appear as parameters in the associated RH problem. The solution of the Toda lattice is computed in long-time asymptotic regions where the asymptotics are not known rigorously.
引用
收藏
页码:805 / 879
页数:75
相关论文
共 50 条
  • [31] Geomechanical assessment of the Corvara earthflow through numerical modelling and inverse analysis
    Schaedler, W.
    Borgatti, L.
    Corsini, A.
    Meier, J.
    Ronchetti, F.
    Schanz, T.
    LANDSLIDES, 2015, 12 (03) : 495 - 510
  • [32] Controlling nanostructure and lattice parameter of the inverse bicontinuous cubic phases in functionalised phytantriol dispersions
    Fraser, Scott J.
    Mulet, Xavier
    Hawley, Adrian
    Separovic, Frances
    Polyzos, Anastasios
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2013, 408 : 117 - 124
  • [33] Inverse scattering transform and the soliton solution of the discrete Ablowitz-Ladik equation
    Li, Yin
    Chen, Meisen
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 472
  • [34] The forward and inverse problems for the scattering of obliquely incident electromagnetic waves in a chiral medium
    Feng, Lixin
    Wang, Haibing
    Zhang, Lei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 284 : 102 - 125
  • [35] On inverse scattering at high energies for the multidimensional nonrelativistic Newton equation in electromagnetic field
    Jollivet, A.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2009, 17 (05): : 441 - 476
  • [36] INVERSE SCATTERING TRANSFORM FOR THE INTEGRABLE NONLOCAL LAKSHMANAN-PORSEZIAN-DANIEL EQUATION
    Xun, Wei-Kang
    Tian, Shou-Fu
    Zhang, Tian-Tian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, : 4941 - 4967
  • [37] Numerical prediction of the printable density range of lattice structures for additive manufacturing
    Tanlak, Niyazi
    Frederik De Lange, Dirk
    Van Paepegem, Wim
    MATERIALS & DESIGN, 2017, 133 : 549 - 558
  • [38] Numerical modeling of selective laser melting lattice structures: A review of approaches
    Alomar, Z.
    Concli, F.
    49TH ITALIAN ASSOCIATION FOR STRESS ANALYSIS CONFERENCE (AIAS 2020), 2021, 1038
  • [39] Additive-Manufactured Sandwich Lattice Structures: A Numerical and Experimental Investigation
    Fergani, Omar
    Tronvoll, Sigmund
    Brotan, Vegard
    Welo, Torgeir
    Sorby, Knut
    PROCEEDINGS OF THE 20TH INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2017), 2017, 1896
  • [40] Numerical investigation on circular and elliptical bulge tests for inverse soft tissue characterization
    Gasparotti, Emanuele
    Vignali, Emanuele
    Quartieri, Stefano
    Lazzeri, Roberta
    Celi, Simona
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2023, 22 (05) : 1697 - 1707