REFINEMENTS AND REVERSES OF FEJER'S INEQUALITIES FOR CONVEX FUNCTIONS ON LINEAR SPACES

被引:0
作者
Dragomir, S. S. [1 ]
机构
[1] Victoria Univ, Coll Engn & Sci, POB 14428, Melbourne, MC 8001, Australia
来源
PROBLEMY ANALIZA-ISSUES OF ANALYSIS | 2020年 / 9卷 / 03期
关键词
Convex functions; Integral inequalities; Hermite-Hadamard inequality; Fejer's inequalities; OSTROWSKI TYPE;
D O I
10.15393/j3.art.2020.8830
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish some refinements and reverses of the celebrated Fejer's inequalities for the general case of functions defined on linear spaces. The obtained bounds are in terms of the Gateaux lateral derivatives. Some applications for norms and semi-inner products in normed linear spaces are also provided.
引用
收藏
页码:99 / 118
页数:20
相关论文
共 11 条
[1]  
Alomari M., 2008, INT J CONT MATH SCI, V3, P1569
[2]  
[Anonymous], 2002, J INEQ PURE APPL MAT
[3]   New convex functions in linear spaces and Jensen's discrete inequality [J].
Chen, Xiusu .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[4]  
Cioranescu I., 1990, GEOMETRY BANACH SPAC
[5]  
Dragomir S. S., 2004, SEMI INNER PRODUCTS
[6]  
Dragomir S. S., 2002, J. Inequal. Pure Appl. Math, V3
[7]  
Dragomir SS., 2000, Selected Topics on Hermite-Hadamard Inequalities and Applications
[8]   Improvement of Jensen's Inequality in terms of Gateaux Derivatives for Convex Functions in Linear Spaces with Applications [J].
Khan, Muhammad Adil ;
Khalid, Sadia ;
Pecaric, Josip .
KYUNGPOOK MATHEMATICAL JOURNAL, 2012, 52 (04) :495-511
[9]   Sharp inequalities of Ostrowski type for convex functions defined on linear spaces and application [J].
Kikianty, Eder ;
Dragomir, S. S. ;
Cerone, P. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (09) :2235-2246
[10]  
Kikianty E, 2010, MATH INEQUAL APPL, V13, P1