On the well-posedness of the Eckhaus equation

被引:0
|
作者
Ablowitz, MJ
Biondini, G
DeLillo, S
机构
[1] UNIV PERUGIA,DIPARTIMENTO FIS,I-06112 PERUGIA,ITALY
[2] IST NAZL FIS NUCL,SEZIONE PERUGIA,I-06112 PERUGIA,ITALY
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9601(97)00240-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Eckhaus equation, which is a nonlinear Schrodinger type equation that can be linearized to the free linear Schrodinger equation, is considered. A linearized analysis of the nonlinear problem indicates that the periodic boundary value problem is ill-posed. The exact solution also demonstrates the ill-posedness, even though the L-2 norm of the solution is a constant of the motion. The ill-posedness disappears on the infinite line with square integrable data, but the solitonic solutions, which are not square integrable, are seriously unstable. (C) 1997 Published by Elsevier Science B.V.
引用
收藏
页码:319 / 323
页数:5
相关论文
共 50 条
  • [1] On the well-posedness of the Eckhaus equation
    Phys Lett Sect A Gen At Solid State Phys, 5-6 (319):
  • [2] WELL-POSEDNESS FOR THE SUPERCRITICAL GKDV EQUATION
    Strunk, Nils
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) : 527 - 542
  • [3] On well-posedness for the Benjamin–Ono equation
    Nicolas Burq
    Fabrice Planchon
    Mathematische Annalen, 2008, 340 : 497 - 542
  • [4] Sharp well-posedness for the Benjamin equation
    Chen, W.
    Guo, Z.
    Xiao, J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6209 - 6230
  • [5] On the Gevrey well-posedness of the Kirchhoff equation
    Tokio Matsuyama
    Michael Ruzhansky
    Journal d'Analyse Mathématique, 2019, 137 : 449 - 468
  • [6] Well-posedness for a perturbation of the KdV equation
    X. Carvajal
    L. Esquivel
    Nonlinear Differential Equations and Applications NoDEA, 2019, 26
  • [7] On the well-posedness of the hyperelastic rod equation
    Hasan Inci
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 795 - 802
  • [8] On the well-posedness of Galbrun's equation
    Hagg, Linus
    Berggren, Martin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 150 : 112 - 133
  • [9] Well-Posedness of a Parabolic Equation with Involution
    Ashyralyev, Allaberen
    Sarsenbi, Abdizhahan
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (10) : 1295 - 1304
  • [10] LOCAL WELL-POSEDNESS FOR KAWAHARA EQUATION
    Kato, Takamori
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2011, 16 (3-4) : 257 - 287