Application of Least Squares Support Vector Machine for Regression to Reliability Analysis

被引:122
|
作者
Guo Zhiwei [1 ]
Bai Guangchen [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Sch Jet Propuls, Beijing 100191, Peoples R China
关键词
mechanism design of spacecraft; support vector machine for regression; least squares support vector machine for regression; Monte Carlo method; reliability; implicit performance function; RESPONSE-SURFACE APPROACH;
D O I
10.1016/S1000-9361(08)60082-5
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In order to deal with the issue of huge computational cost very well in direct numerical simulation, the traditional response surface method (RSM) as a classical regression algorithm is used to approximate a functional relationship between the state variable and basic variables in reliability design. The algorithm has treated successfully some problems of implicit performance function in reliability analysis. However, its theoretical basis of empirical risk minimization narrows its range of applications for the regression model. In contrast to classical algorithms, the support vector machine for regression (SVR) based on structural risk minimization has the excellent abilities of small sample learning and generalization, and superiority over the traditional regression method. Nevertheless, SVR is time consuming and huge space demanding for the reliability analysis of large samples. This article introduces the least squares support vector machine for regression (LSSVR) into reliability analysis to overcome these shortcomings. Numerical results show that the reliability method based on the LSSVR has excellent accuracy and smaller computational cost than the reliability method based on support vector machine (SVM). Thus, it is valuable for the engineering application.
引用
收藏
页码:160 / 166
页数:7
相关论文
共 50 条
  • [41] Primal least squares twin support vector regression
    Huang, Hua-juan
    Ding, Shi-fei
    Shi, Zhong-zhi
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2013, 14 (09): : 722 - 732
  • [42] Complete subset least squares support vector regression
    Qiu, Yue
    ECONOMICS LETTERS, 2021, 200
  • [43] Primal least squares twin support vector regression
    Huang, Hua-Juan
    Ding, Shi-Fei
    Shi, Zhong-Zhi
    Journal of Zhejiang University: Science C, 2013, 14 (09): : 722 - 732
  • [44] Primal least squares twin support vector regression
    Hua-juan Huang
    Shi-fei Ding
    Zhong-zhi Shi
    Journal of Zhejiang University SCIENCE C, 2013, 14 : 722 - 732
  • [45] Recursive reduced least squares support vector regression
    Zhao, Yongping
    Sun, Jianguo
    PATTERN RECOGNITION, 2009, 42 (05) : 837 - 842
  • [46] Nonlinear dynamic system identification using least squares support vector machine regression
    Wang, XD
    Ye, MY
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 941 - 945
  • [47] A robust weighted least squares support vector regression based on least trimmed squares
    Chen, Chuanfa
    Yan, Changqing
    Li, Yanyan
    NEUROCOMPUTING, 2015, 168 : 941 - 946
  • [48] Pump performance analysis based on least squares support vector machine
    Wan, Yi
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2009, 25 (08): : 114 - 118
  • [49] Least square support vector machine for structural reliability analysis
    Zhu, Changxing
    Zhao, Hongbo
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2016, 53 (01) : 51 - 61
  • [50] An application of hybrid least squares support vector machine to environmental process modeling
    Kimi, BJ
    Kim, IL
    PARALLEL AND DISTRIBUTED COMPUTING: APPLICATIONS AND TECHNOLOGIES, PROCEEDINGS, 2004, 3320 : 184 - 187