Prospects of Ternary Cd1-xZnxS as an Electron Transport Layer and Associated Interface Defects in a Planar Lead Halide Perovskite Solar Cell via Numerical Simulation

被引:16
作者
Chowdhury, Towhid Hossain [1 ,2 ]
Ferdaous, Mohammad Tanvirul [3 ]
Wadi, Mohd. Aizat Abdul [1 ,2 ]
Chelvanathan, Puvaneswaran [1 ]
Amin, Nowshad [1 ,3 ]
Islam, Ashraful [2 ]
Kamaruddin, Nurhafiza [1 ]
Zin, Muhammad Irsyamuddin M. [1 ]
Ruslan, Mohd Hafidz [1 ]
Bin Sopian, Kamaruzzaman [1 ]
Akhtaruzzaman, Md. [1 ]
机构
[1] Natl Univ Malaysia, SERI, Bangi 43600, Selangor, Malaysia
[2] Natl Inst Mat Sci, Ctr Green Res Energy & Environm Mat, Photovolta Mat Grp, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[3] Natl Univ Malaysia, Fac Engn & Built Environm, Dept Elect Elect & Syst Engn, Bangi 43600, Selangor, Malaysia
关键词
Cd1-xZnxS; electron transport layer; interface defect; perovskite solar cell; SCAPS-1D;
D O I
10.1007/s11664-018-6154-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study we present a ternary alloy, Cd1-xZnxS as an electron transport layer for a planar lead halide perovskite solar cell via numerical simulation with solar cell capacitance simulator (SCAPS) software. Performance dependence on molar composition variation in the Cd1-xZnxS alloy was studied for the mixed perovskite CH3NH3PbI3-xClx absorber and spiro-OMeTAD hole transport material in a planar perovskite solar cell. Additionally, the defects on both Cd1-xZnxS/CH3NH3PbI3-xClx and CH3NH3PbI3-xClx/spiro-OMeTAD interface were thoroughly investigated. Simultaneously, a thickness of 700 nm for CH3NH3PbI3-xClx absorber with 50-nm-thick Cd0.2Zn0.8S (x = 0.8) was optimized. Analysis of the numerical solutions via SCAPS provides a trend and pattern for Cd0.2Zn0.8S as an effective electron transport layer for planar perovskite solar cells with a yield efficiency up to 24.83%. The planar perovskite solar cell shows an open-circuit voltage of 1.224 V, short-circuit current density of 25.283 mA/cm(2) and a fill factor of 80.22.
引用
收藏
页码:3051 / 3058
页数:8
相关论文
共 49 条
[41]  
Wu Y., 2014, ENERG ENVIRON SCI, V7, P5
[42]  
Xu J., 2016, ADV MATER, V28, P14
[43]  
Xu X., 2015, J MATER CHEM A, V3, P6
[44]   An effective way to analyse the performance limiting parameters of poly-crystalline silicon solar cell fabricated in the production line [J].
Yadav, Pankaj ;
Pandey, Kavita ;
Tripathi, Brijesh ;
Kumar, Chandra Mauli ;
Srivastava, Sanjay K. ;
Singh, P. K. ;
Kumar, Manoj .
SOLAR ENERGY, 2015, 122 :1-10
[45]  
Yang G., 2016, J MATER CHEM A, V4, P20
[46]  
Yongzhen W, 2014, APPL PHYS EXPRESS, V7
[47]  
Yue Y., 2016, ADV MATER, V28, P5
[48]   Interface engineering of highly efficient perovskite solar cells [J].
Zhou, Huanping ;
Chen, Qi ;
Li, Gang ;
Luo, Song ;
Song, Tze-bing ;
Duan, Hsin-Sheng ;
Hong, Ziruo ;
You, Jingbi ;
Liu, Yongsheng ;
Yang, Yang .
SCIENCE, 2014, 345 (6196) :542-546
[49]   Low-Temperature Processed and Carbon-Based ZnO/CH3NH3Pbl3/C Planar Heterojunction Perovskite Solar Cells [J].
Zhou, Huawei ;
Shi, Yantao ;
Wang, Kai ;
Dong, Qingshun ;
Bai, Xiaogong ;
Xing, Yujin ;
Du, Yi ;
Ma, Tingli .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (09) :4600-4605