Mathematical analysis of variational isogeometric methods

被引:202
作者
da Veiga, L. Beirao [1 ,2 ]
Buffa, A. [2 ]
Sangalli, G. [2 ,3 ]
Vazquez, R. [2 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] E Magenes CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, Italy
[3] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
基金
欧洲研究理事会;
关键词
FLUID-STRUCTURE INTERACTION; CONFORMING B-SPLINES; ELEMENT EXTERIOR CALCULUS; SUITABLE T-SPLINES; FINITE-ELEMENTS; NONLINEAR ELASTICITY; COMPUTATIONAL DOMAIN; LINEAR INDEPENDENCE; LOCAL REFINEMENT; NURBS;
D O I
10.1017/S096249291400004X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This review paper collects several results that form part of the theoretical foundation of isogeometric methods. We analyse variational techniques for the numerical resolution of PDEs based on splines or NURBS and we provide optimal approximation and error estimates in several cases of interest. The theory presented also includes estimates for T-splines, which are an extension of splines allowing for local refinement. In particular, we focus our attention on elliptic and saddle point problems, and we define spline edge and face elements. Our theoretical results are demonstrated by a rich set of numerical examples. Finally, we discuss implementation and efficiency together with preconditioning issues for the final linear system.
引用
收藏
页码:157 / 287
页数:131
相关论文
共 139 条
[1]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[2]  
Aigner M, 2009, LECT NOTES COMPUT SC, V5654, P19, DOI 10.1007/978-3-642-03596-8_2
[3]  
[Anonymous], 2007, ENCY MATH ITS APPL
[4]   A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis [J].
Apostolatos, Andreas ;
Schmidt, Robert ;
Wuechner, Roland ;
Bletzinger, Kai-Uwe .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 97 (07) :473-504
[5]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[6]   FINITE ELEMENT EXTERIOR CALCULUS FROM HODGE THEORY TO NUMERICAL STABILITY [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (02) :281-354
[7]   A fully "locking-free" isogeometric approach for plane linear elasticity problems: A stream function formulation [J].
Auricchio, F. ;
da Veiga, L. Beirao ;
Buffa, A. ;
Lovadina, C. ;
Reali, A. ;
Sangalli, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) :160-172
[8]   A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis [J].
Auricchio, F. ;
Calabro, F. ;
Hughes, T. J. R. ;
Reali, A. ;
Sangalli, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 249 :15-27
[9]   ISOGEOMETRIC COLLOCATION METHODS [J].
Auricchio, F. ;
Da Veiga, L. Beirao ;
Hughes, T. J. R. ;
Reali, A. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (11) :2075-2107
[10]   The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations [J].
Auricchio, F. ;
da Veiga, L. Beirao ;
Lovadina, C. ;
Reali, A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :314-323