Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces

被引:54
作者
Gala, Sadek [1 ]
Ragusa, Maria Alessandra [2 ]
Sawano, Yoshihiro [3 ]
Tanaka, Hitoshi [4 ]
机构
[1] Univ Mostaganem, Dept Math, Box 227, Mostaganem 27000, Algeria
[2] Univ Catania, Dipartimento Math & Informat, I-95125 Catania, Italy
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 6068502, Japan
[4] Univ Tokyo, Dept Math Sci, Tokyo 1538914, Japan
基金
日本学术振兴会;
关键词
uniqueness; Orlicz-Morrey spaces; quasi-geostrophic equations; 76U05; 76B03; 35Q35; theta is an element of del(theta)over-tilde alpha <= subset of; FRACTIONAL INTEGRAL-OPERATORS;
D O I
10.1080/00036811.2013.772582
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the quasi-geostrophic equations with the initial data theta(0) is an element of L-2 (R-n). Let theta and (theta) over tilde be two weak solutions with the same initial value theta(0). If del theta is an element of L2 alpha/2 alpha-r ([0, T], M-L2LogPL (n/r)) with 0 <= r <= alpha, where M-L2LogPL (n/r) (R-n) is the OrliczMorrey space (for a definition of this space, see Definition 2.1), then we have theta = (theta) over tilde. In view of the embedding L-n/r subset of M-p(n/r) subset of M-L2LogPL (n/r) with 2 < p <= n/r and p > 1, we see that our result improves the previous result of Dong and Chen. [Asymptotic stability of the critical and super-critical dissipative quasigeostrophic equation. Nonlinearity. 19 (2006), 2919-2928]. This is an extension of earlier regularity results in the Serrins type space L-q ([0, T], L-p (R-2)).
引用
收藏
页码:356 / 368
页数:13
相关论文
共 22 条
[1]  
[Anonymous], 2010, Theory of Function Spaces
[2]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[3]   On the critical dissipative quasi-geostrophic equation [J].
Constantin, P ;
Cordoba, D ;
Wu, JH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 :97-107
[4]   Behavior of solutions of 2D quasi-geostrophic equations [J].
Constantin, P ;
Wu, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (05) :937-948
[5]   Asymptotic stability of the critical and super-critical dissipative quasi-geostrophic equation [J].
Dong, Bo-Qing ;
Chen, Zhi-Min .
NONLINEARITY, 2006, 19 (12) :2919-2928
[6]   On the weak-strong uniqueness of the dissipative surface quasi-geostrophic equation [J].
Dong, Bo-Qing ;
Chen, Zhi-Min .
NONLINEARITY, 2012, 25 (05) :1513-1524
[7]   A new Beale-Kato-Majda criteria for the 3D magneto-micropolar fluid equations in the Orlicz-Morrey space [J].
Gala, Sadek ;
Sawano, Yoshihiro ;
Tanaka, Hitoshi .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (11) :1321-1334
[8]  
Gilbarg D., 1977, Grundlehren der Mathematischen Wissenschaften, V224
[9]   Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space [J].
Ju, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 251 (02) :365-376
[10]   SEMILINEAR HEAT-EQUATIONS AND THE NAVIER-STOKES EQUATION WITH DISTRIBUTIONS IN NEW FUNCTION-SPACES AS INITIAL DATA [J].
KOZONO, H ;
YAMAZAKI, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (5-6) :959-1014