Message Transmission Strategy Based on Recurrent Neural Network and Attention Mechanism in Iot System

被引:35
|
作者
Gou, Fangfang [1 ]
Wu, Jia [1 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Internet of Things; recursive network; attention mechanism; personalized ranking; historical behavior; delivery ratio; COMMUNITY; COMMUNICATION;
D O I
10.1142/S0218126622501262
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the popularization of the Internet of Things technology and the improvement of 5G communication technology, the influence of mobile devices on the network structure is increasing. The devices in the network are usually regarded as social users that transmit information. Because the movement of users is dynamic and random, it is more difficult for complex networks to grasp the changing rules of their topological structure. The data transmission model established by considering only the historical behavior of users can no longer meet the demand for fast transmission of large-capacity data. Based on this, this paper proposes a dynamic personalized data transmission model (GRDPS) that considers the recurrent neural network and attention mechanism. First, it uses a recurrent neural network to build users' personalized preferences and model the user's historical behavior. Then, GRDPS introduces an attention mechanism to dynamically weight historical user behaviors based on the user's current message transmission. It is different from the previous methods of modeling user historical behaviors. Based on the requirements of user dynamics, GRDPS effectively considers the temporal characteristics of user historical behaviors and automatically learns the evolution law of user behaviors. Based on the demand of user randomness, GRDPS fully considers the characteristic correlation between the user's historical behavior and current transmission demand. Finally, GRDPS combines these two points to obtain a personalized ranking of users. The simulation results show that the delivery rate of GRDPS is up to 0.95. Moreover, its data transmission delay and network overhead are better than other methods in the experiment.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] A Synergic Neural Network For Medical Image Classification Based On Attention Mechanism
    Wang Shanshan
    Zhang Tao
    Li Fei
    Ruan ZhenPing
    Yang Zhen
    Zhan Shu
    Zhang ZhiQiang
    2022 ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING (CACML 2022), 2022, : 82 - 87
  • [42] Attention-based recurrent neural network for automatic behavior laying hen recognition
    Laleye, Frejus A. A.
    Mousse, Mikael A.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (22) : 62443 - 62458
  • [43] Attention Mechanism with Gated Recurrent Unit Using Convolutional Neural Network for Aspect Level Opinion Mining
    Rani, Meesala Shobha
    Subramanian, Sumathy
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (08) : 6157 - 6169
  • [44] Attention Mechanism with Gated Recurrent Unit Using Convolutional Neural Network for Aspect Level Opinion Mining
    Meesala Shobha Rani
    Sumathy Subramanian
    Arabian Journal for Science and Engineering, 2020, 45 : 6157 - 6169
  • [45] Security situation prediction method of GRU neural network based on attention mechanism
    He C.
    Zhu J.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2021, 43 (01): : 258 - 266
  • [46] Hierarchical neural network detection model based on deep context and attention mechanism
    Zhang, Yuxi
    Zhao, Yu
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2023, 18 (02) : 162 - 175
  • [47] A Modified Deep Bi-Gated Recurrent Neural Network-Based Iot System for Effective Heart Disease Prediction
    Bhaskaru, O.
    Lalitha, K.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2025,
  • [48] Application of GPR System With Convolutional Neural Network Algorithm Based on Attention Mechanism to Oil Pipeline Leakage Detection
    Li, Jiadai
    Yang, Ding
    Guo, Cheng
    Ji, Chenggao
    Jin, Yangchao
    Sun, Haijiao
    Zhao, Qing
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [49] Aircraft detection in SAR images based on convolutional neural network and attention mechanism
    Li G.
    Su J.
    Li Y.
    Li X.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2021, 43 (11): : 3202 - 3210
  • [50] Image super -resolution based on deep neural network of multiple attention mechanism *
    Yang, Xin
    Li, Xiaochuan
    Li, Zhiqiang
    Zhou, Dake
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 75