Message Transmission Strategy Based on Recurrent Neural Network and Attention Mechanism in Iot System

被引:35
|
作者
Gou, Fangfang [1 ]
Wu, Jia [1 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Internet of Things; recursive network; attention mechanism; personalized ranking; historical behavior; delivery ratio; COMMUNITY; COMMUNICATION;
D O I
10.1142/S0218126622501262
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the popularization of the Internet of Things technology and the improvement of 5G communication technology, the influence of mobile devices on the network structure is increasing. The devices in the network are usually regarded as social users that transmit information. Because the movement of users is dynamic and random, it is more difficult for complex networks to grasp the changing rules of their topological structure. The data transmission model established by considering only the historical behavior of users can no longer meet the demand for fast transmission of large-capacity data. Based on this, this paper proposes a dynamic personalized data transmission model (GRDPS) that considers the recurrent neural network and attention mechanism. First, it uses a recurrent neural network to build users' personalized preferences and model the user's historical behavior. Then, GRDPS introduces an attention mechanism to dynamically weight historical user behaviors based on the user's current message transmission. It is different from the previous methods of modeling user historical behaviors. Based on the requirements of user dynamics, GRDPS effectively considers the temporal characteristics of user historical behaviors and automatically learns the evolution law of user behaviors. Based on the demand of user randomness, GRDPS fully considers the characteristic correlation between the user's historical behavior and current transmission demand. Finally, GRDPS combines these two points to obtain a personalized ranking of users. The simulation results show that the delivery rate of GRDPS is up to 0.95. Moreover, its data transmission delay and network overhead are better than other methods in the experiment.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] 3D Memristor-based Adjustable Deep Recurrent Neural Network with Programmable Attention Mechanism
    An, Hongyu
    Zhou, Zhen
    Yi, Yang
    PROCEEDINGS OF NEUROMORPHIC COMPUTING SYMPOSIUM (NCS 2017), 2017,
  • [22] DEEP CONVOLUTIONAL RECURRENT NEURAL NETWORK WITH ATTENTION MECHANISM FOR ROBUST SPEECH EMOTION RECOGNITION
    Huang, Che-Wei
    Narayanan, Shrikanth
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 583 - 588
  • [23] ABCNN-IDS: Attention-Based Convolutional Neural Network for Intrusion Detection in IoT Networks
    Momand, Asadullah
    Jan, Sana Ullah
    Ramzan, Naeem
    WIRELESS PERSONAL COMMUNICATIONS, 2024, 136 (04) : 1981 - 2003
  • [24] A BP Neural Network Based Recommender Framework With Attention Mechanism
    Wang, Chang-Dong
    Xi, Wu-Dong
    Huang, Ling
    Zheng, Yin-Yu
    Hu, Zi-Yuan
    Lai, Jian-Huang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (07) : 3029 - 3043
  • [25] Distribution Network Topology Identification Based on Attention Mechanism and Convolutional Neural Network
    Yang X.
    Jiang J.
    Liu F.
    Tian Y.
    Li F.
    Wu Y.
    Dianwang Jishu/Power System Technology, 2022, 46 (05): : 1672 - 1682
  • [26] A Multi-Scale Attention Mechanism Based Domain Adversarial Neural Network Strategy for Bearing Fault Diagnosis
    Zhang, Quanling
    Tang, Ningze
    Fu, Xing
    Peng, Hao
    Bo, Cuimei
    Wang, Cunsong
    ACTUATORS, 2023, 12 (05)
  • [27] Recurrent neural networks based paraphrase identification model combined with attention mechanism
    Li X.
    Yao C.-L.
    Fan F.-L.
    Yu X.-Q.
    Li, Xu (lixu102@aliyun.com), 1600, Northeast University (36): : 152 - 158
  • [28] Attention-based sentiment analysis using convolutional and recurrent neural network
    Usama, Mohd
    Ahmad, Belal
    Song, Enmin
    Hossain, M. Shamim
    Alrashoud, Mubarak
    Muhammad, Ghulam
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 113 : 571 - 578
  • [29] Attention-based Recurrent Neural Network for Urban Vehicle Trajectory Prediction
    Choi, Seongjin
    Kim, Jiwon
    Yeo, Hwasoo
    10TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2019) / THE 2ND INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40 2019) / AFFILIATED WORKSHOPS, 2019, 151 : 327 - 334
  • [30] A novel IoT-based deep neural network for COVID-19 detection using a soft-attention mechanism
    Fki Z.
    Ammar B.
    Fourati R.
    Fendri H.
    Hussain A.
    Ben Ayed M.
    Multimedia Tools and Applications, 2024, 83 (18) : 54989 - 55009