Hierarchical Sulfur-Based Cathode Materials with Long Cycle Life for Rechargeable Lithium Batteries

被引:90
作者
Wang, Jiulin [1 ]
Yin, Lichao [1 ]
Jia, Hao [1 ]
Yu, Haitao [1 ]
He, Yushi [1 ]
Yang, Jun [1 ]
Monroe, Charles W. [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Chem Engn, Shanghai 200240, Peoples R China
[2] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
基金
中国国家自然科学基金;
关键词
electrochemistry; graphene; nanostructures; rechargeable Li-S batteries; sulfur composite; COMPOSITE CATHODES; HIGH-POWER; CARBON; PERFORMANCE; NANOPARTICLES; CHALLENGES; ELECTRODES; NANOTUBES; POLYMERS; CAPACITY;
D O I
10.1002/cssc.201300742
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Composite materials of porous pyrolyzed polyacrylonitrile-sulfur@graphene nanosheet (pPAN-S@GNS) are fabricated through a bottom-up strategy. Microspherical particles are formed by spray drying of a mixed aqueous colloid of PAN nanoparticles and graphene nanosheets, followed by a simple heat treatment with elemental sulfur. The pPAN-S primary nanoparticles are wrapped homogeneously and loosely within a three-dimensional network of graphene nanosheets (GNS). The hierarchical pPAN-S@GNS composite shows a high reversible capacity of 1449.3 mAhg(sulfur)(-1) or 681.2 mAhg(composite)(-1) in the second cycle; after 300 cycles at a 0.2 C charge/discharge rate the capacity retention is 88.8% of its initial reversible value. Additionally, the coulombic efficiency (CE) during cycling is near 100 %, apart from in the first cycle, in which CE is 81.1 %. A remarkable capacity of near 700 mAhg(sulfur)(-1) is obtained, even at a high discharge rate of 10 C. The superior performance of pPAN-S@GNS is ascribed to the spherical secondary GNS structure that creates an electronically conductive 3D framework and also reinforces structural stability.
引用
收藏
页码:563 / 569
页数:7
相关论文
共 50 条
[11]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[12]   Lithium-Sulfur Battery Cathode Enabled by Lithium-Nitrile Interaction [J].
Guo, Juchen ;
Yang, Zichao ;
Yu, Yingchao ;
Abruna, Hector D. ;
Archer, Lynden A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (02) :763-767
[13]   Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium-Sulfur Batteries [J].
Guo, Juchen ;
Xu, Yunhua ;
Wang, Chunsheng .
NANO LETTERS, 2011, 11 (10) :4288-4294
[14]   Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries [J].
He, Xiangming ;
Ren, Jianguo ;
Wang, Li ;
Pu, Weihua ;
Jiang, Changyin ;
Wan, Chunrong .
JOURNAL OF POWER SOURCES, 2009, 190 (01) :154-156
[15]   Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries [J].
Jayaprakash, N. ;
Shen, J. ;
Moganty, Surya S. ;
Corona, A. ;
Archer, Lynden A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (26) :5904-5908
[16]  
Jayaprakash N., 2011, ANGEW CHEM, V123, P6026, DOI DOI 10.1002/ANGE.201100637
[17]   A novel polymer electrolyte to improve the cycle life of high performance lithium-sulfur batteries [J].
Jeddi, Kazem ;
Ghaznavi, Mahmoudreza ;
Chen, P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (08) :2769-2772
[18]  
Ji XL, 2009, NAT MATER, V8, P500, DOI [10.1038/NMAT2460, 10.1038/nmat2460]
[19]   Electrodes with high power and high capacity for rechargeable lithium batteries [J].
Kang, KS ;
Meng, YS ;
Bréger, J ;
Grey, CP ;
Ceder, G .
SCIENCE, 2006, 311 (5763) :977-980
[20]   Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites [J].
Lai, C. ;
Gao, X. P. ;
Zhang, B. ;
Yan, T. Y. ;
Zhou, Z. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (11) :4712-4716