Dynamics and entanglement of a membrane-in-the-middle optomechanical system in the extremely-large-amplitude regime

被引:30
作者
Gao, Ming [1 ,2 ]
Lei, FuChuan [1 ,2 ]
Du, ChunGuang [1 ,2 ]
Long, GuiLu [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[3] Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
[4] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
optomechanics; self-sustained oscillation; entanglement; membrane-in-the-middle optomechanical system; MIMOS; extremely-large-amplitude regime; ELAR; PARAMETRIC OSCILLATORY INSTABILITY; CAVITY; STATE;
D O I
10.1007/s11433-015-5704-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The study of optomechanical systems has attracted much attention, most of which are concentrated in the physics in the small-amplitude regime. While in this article, we focus on optomechanics in the extremely-large-amplitude regime and consider both classical and quantum dynamics. Firstly, we study classical dynamics in a membrane-in-the-middle optomechanical system in which a partially reflecting and flexible membrane is suspended inside an optical cavity. We show that the membrane can present self-sustained oscillations with limit cycles in the shape of sawtooth-edged ellipses and exhibit dynamical multistability. Then, we study the dynamics of the quantum fluctuations around the classical orbits. By using the logarithmic negativity, we calculate the evolution of the quantum entanglement between the optical cavity mode and the membrane during the mechanical oscillation. We show that there is some synchronism between the classical dynamical process and the evolution of the quantum entanglement.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Extremal entanglement and mixedness in continuous variable systems
    Adesso, G
    Serafini, A
    Illuminati, F
    [J]. PHYSICAL REVIEW A, 2004, 70 (02) : 022318 - 1
  • [2] High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor
    Arcizet, O.
    Cohadon, P. -F.
    Briant, T.
    Pinard, M.
    Heidmann, A.
    Mackowski, J. -M.
    Michel, C.
    Pinard, L.
    Francais, O.
    Rousseau, L.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (13)
  • [3] Cavity optomechanics
    Aspelmeyer, Markus
    Kippenberg, Tobias J.
    Marquardt, Florian
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (04) : 1391 - 1452
  • [4] Bagheri M, 2011, NAT NANOTECHNOL, V6, P726, DOI [10.1038/NNANO.2011.180, 10.1038/nnano.2011.180]
  • [5] QUANTUM LANGEVIN EQUATION
    BENGURIA, R
    KAC, M
    [J]. PHYSICAL REVIEW LETTERS, 1981, 46 (01) : 1 - 4
  • [6] COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES
    BENNETT, CH
    WIESNER, SJ
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (20) : 2881 - 2884
  • [7] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [8] Optomechanical trapping and cooling of partially reflective mirrors
    Bhattacharya, M.
    Uys, H.
    Meystre, P.
    [J]. PHYSICAL REVIEW A, 2008, 77 (03):
  • [9] Low quantum noise tranquilizer for Fabry-Perot interferometer
    Braginsky, VB
    Vyatchanin, SP
    [J]. PHYSICS LETTERS A, 2002, 293 (5-6) : 228 - 234
  • [10] Analysis of parametric oscillatory instability in power recycled LIGO interferometer
    Braginsky, VB
    Strigin, SE
    Vyatchanin, SP
    [J]. PHYSICS LETTERS A, 2002, 305 (3-4) : 111 - 124