Microcrystalline Diamond Powders As Promising Objects for Generation of Multifrequency Stimulated Raman Scattering

被引:6
作者
Gorelik, V. S. [1 ,2 ]
Skrabatun, A. V. [1 ,2 ]
Bi, Dongxue [1 ,2 ]
机构
[1] Russian Acad Sci, Lebedev Phys Inst, Moscow 119991, Russia
[2] Bauman Moscow State Tech Univ, Moscow 105005, Russia
基金
俄罗斯基础研究基金会;
关键词
CVD; CONDUCTIVITY;
D O I
10.1134/S0030400X19050096
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Regular trends of Raman scattering in microcrystalline diamond powders as a function of size of the diamond microcavities are investigated in the range of the latter between 1 to 600 m. The observed effect of anomalously high intensity of spontaneous Raman scattering is attributed to trapping of electromagnetic radiation with a wavelength shorter than the size of the diamond microcrystals in diamond microcavities. The electromagnetic energy density for the driving and secondary radiation increases as a result of photon trapping in the diamond microcavities. A high Q factor of the fundamental optical mode in the vibrational sp-ectrum of diamond and anomalous increase in the Raman scattering intensity in diamond microcavities pave the way for observation of the low-threshold multifrequency Raman scattering in microcrystalline diamond powders. Using the radiation of a pulsed solid state YAG:Nd3+ laser at the fundamental wavelength (=1064nm) and its optical harmonics ( = 532, 355, 266 nm) as sources of driving radiation opens up a possibility for creation of an array of equidistant (with respect to frequency shift) laser sources with wavelengths extending from the ultraviolet to the terahertz range promising for investigation of biological and medical objects.
引用
收藏
页码:533 / 538
页数:6
相关论文
共 29 条
[1]  
Argunov K. P., 1991, Soviet Physics - Lebedev Institute Reports, P18
[2]  
Bohren C.F., 2008, ABSORPTION SCATTERIN
[3]   MAN-MADE DIAMONDS [J].
BUNDY, FP ;
HALL, HT ;
STRONG, HM ;
WENTORF, RH .
NATURE, 1955, 176 (4471) :51-55
[4]   Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond -: art. no. 121405 [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2001, 63 (12)
[5]   High average power diamond Raman laser [J].
Feve, Jean-Philippe M. ;
Shortoff, Kevin E. ;
Bohn, Matthew J. ;
Brasseur, Jason K. .
OPTICS EXPRESS, 2011, 19 (02) :913-922
[6]  
Gorelik S. V., 1996, SOV PHYS JETP, V82, P1154
[7]   Deep ultraviolet diamond Raman laser [J].
Granados, Eduardo ;
Spence, David J. ;
Mildren, Richard P. .
OPTICS EXPRESS, 2011, 19 (11) :10857-10863
[8]   A Combined Petrographic and Micro-Raman Study of Meteoritic Microdiamond in ALH-77257 Ureilite and ALH-78113 Aubrite [J].
Gyollai, Ildiko ;
Gucsik, Arnold ;
Veres, Miklos ;
Koos, Margit ;
Nagy, Szabolcs ;
Berczi, Szaniszlo .
SPECTROSCOPY LETTERS, 2012, 45 (02) :151-155
[9]   High-order stimulated Raman scattering in CVD single crystal diamond [J].
Kaminskii, A. A. ;
Hemley, R. J. ;
Lai, J. ;
Yan, C. S. ;
Mao, H. K. ;
Ralchenko, V. G. ;
Eichler, H. J. ;
Rhee, H. .
LASER PHYSICS LETTERS, 2007, 4 (05) :350-353
[10]   Observation of stimulated Raman scattering in CVD-diamond [J].
Kaminskii, AA ;
Ralchenko, VG ;
Konov, VI .
JETP LETTERS, 2004, 80 (04) :267-270