On numerical calculation of Renyi entropy for a sphere

被引:2
作者
Kim, Nakwoo [1 ,2 ]
机构
[1] Kyung Hee Univ, Dept Phys, Seoul 130701, South Korea
[2] Kyung Hee Univ, Res Inst Basic Sci, Seoul 130701, South Korea
基金
新加坡国家研究基金会;
关键词
Renyi entropy; Conformal field theory; ENTANGLEMENT ENTROPY;
D O I
10.1016/j.physletb.2014.04.052
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We numerically compute the Renyi entropy for four-dimensional free scalar field theory with a spherical entangling surface. As is well known, the Renyi entropy as a function of the boundary area exhibits linear dependence in the leading order. The coefficient of the subleading logarithmic term from our numerical data, as a function of the Renyi order q, agrees nicely with the general prediction of conformal field theory computation. The motivation of this work is also partly to see how the efficiency of numerical computation changes as a function of q. For q < 1 the summation over eigenvalues of reduced density matrix takes longer since the series converges more slowly than for q = 1. For q > 1 the convergence is faster, but the relative error becomes large as a general trend. (C) 2014 The Author. Published by Elsevier B.V.
引用
收藏
页码:233 / 236
页数:4
相关论文
共 14 条
  • [1] Disk entanglement entropy for a Maxwell field
    Agon, Cesar A.
    Headrick, Matthew
    Jafferis, Daniel L.
    Kasko, Skyler
    [J]. PHYSICAL REVIEW D, 2014, 89 (02)
  • [2] Entanglement entropy in all dimensions
    Braunstein, Samuel L.
    Das, Saurya
    Shankaranarayanan, S.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07):
  • [3] Entanglement entropy for the n-sphere
    Casini, H.
    Huerta, M.
    [J]. PHYSICS LETTERS B, 2010, 694 (02) : 167 - 171
  • [4] DeNardo L, 1997, CLASSICAL QUANT GRAV, V14, P1059, DOI 10.1088/0264-9381/14/5/013
  • [5] FINITE-TEMPERATURE SCALAR FIELD-THEORY IN STATIC DE SITTER SPACE
    FURSAEV, DV
    MIELE, G
    [J]. PHYSICAL REVIEW D, 1994, 49 (02): : 987 - 998
  • [6] Numerical determination of the entanglement entropy for free fields in the cylinder
    Huerta, Marina
    [J]. PHYSICS LETTERS B, 2012, 710 (4-5) : 691 - 696
  • [7] Klebanov I.R., 2012, J HIGH ENERGY PHYS, V1204
  • [8] Lee J., ARXIV14031580
  • [9] Numerical determination of entanglement entropy for a sphere
    Lohmayer, R.
    Neuberger, H.
    Schwimmer, A.
    Theisen, S.
    [J]. PHYSICS LETTERS B, 2010, 685 (2-3) : 222 - 227
  • [10] The large-N limit of superconformal field theories and supergravity
    Maldacena, J
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (04) : 1113 - 1133